1 |
MOURAD E, COUSTAN L, LANNELONGUE P, et al. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors[J]. Nature Materials, 2017, 16: 446-453.
|
2 |
CHEN L F, LU Y, YU L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science, 2017, 10(8): 1777-1783.
|
3 |
RAN F T, YANG X B, SHAO L. Recent progress in carbon-based nanoarchitectures for advanced supercapacitors[J]. Advanced Composites and Hybrid Materials, 2018, 1(1): 32-55.
|
4 |
毛喜玲. 高比容电极材料及微型超级电容器特性研究[D]. 成都: 电子科技大学, 2019.
|
|
MAO X L. Investigation of high specific capacitance electrode materials and microsupercapacitors[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
5 |
ZHANG X, YANG S X, LU W, et al. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2021, 592: 95-102.
|
6 |
魏振山, 吴磊, 李龙, 等. 柔性超级电容器及其研究进展[J]. 纺织科技进展, 2023(3): 1-5.
|
|
WEI Z S, WU L, LI L, et al. Flexible supercapacitors and their research progress[J]. Progress in Textile Science & Technology, 2023(3): 1-5.
|
7 |
RAZA N, KUMAR T, SINGH V, et al. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material[J]. Coordination Chemistry Reviews, 2021, 430: 213660.
|
8 |
ZHANG R, PANG H. Application of graphene-metal/conductive polymer based composites in supercapacitors[J]. Journal of Energy Storage, 2021, 33: 102037.
|
9 |
LIU R, ZHOU A, ZHANG X R, et al. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors[J]. Chemical Engineering Journal, 2021, 412: 128611.
|
10 |
WANG R, LI X Y, NIE Z G, et al. Metal/metal oxide nanoparticles-composited porous carbon for high-performance supercapacitors[J]. Journal of Energy Storage, 2021, 38: 102479.
|
11 |
佟永丽, 武祥. 金属有机框架衍生的Co3O4电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043.
|
|
TONG Y L, WU X. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework[J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043.
|
12 |
张成光. MOFs/导电聚合物复合材料制备及其电化学特性研究[D]. 成都: 电子科技大学, 2020.
|
|
ZHANG C G. Preparation and electrochemical properties of MOFs/conductive polymer composites[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
13 |
孙雪娇, 王晨鹏, 潘晓阳, 等. MOFs基多孔碳材料在气体吸附与分离中的应用[J]. 科学通报, 2021, 66(27): 3590-3603.
|
|
SUN X J, WANG C P, PAN X Y, et al. MOFs-derived porous carbon materials for gas adsorption and separation[J]. Chinese Science Bulletin, 2021, 66(27): 3590-3603.
|
14 |
YUAN B Q, WANG X, ZHOU X, et al. Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons[J]. Chemical Engineering Journal, 2019, 355: 679-686.
|
15 |
葛全倩, 徐迈, 梁铣, 等. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705.
|
|
GE Q Q, XU M, LIANG X, et al. Research progress on the application of MOFs in photoelectrocatalysis[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705.
|
16 |
JIAO L, WANG Y, JIANG H L, et al. Metal-organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018, 30(37): e1703663.
|
17 |
RAN F T, XU X Q, PAN D, et al. Ultrathin 2D metal–organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nano-Micro Letters, 2020, 12(1): 46.
|
18 |
王全璐, 宋慧敏, 张展鹏, 等. 金属有机骨架及其复合材料超电容性能研究进展[J]. 化学推进剂与高分子材料, 2021, 19(6): 19-25.
|
|
WANG Q L, SONG H M, ZHANG Z P, et al. Research progress of metal-organic frameworks and supercapacitor performance of their composite materials[J]. Chemical Propellants & Polymeric Materials, 2021, 19(6): 19-25.
|
19 |
WANG Y L, SONG J, WONG W Y. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(8): e202218343.
|
20 |
LIU X J, ZHANG X L, LIU R M, et al. A Ni-doped Mn-MOF decorated on Ni-foam as an electrode for high-performance supercapacitors[J]. Journal of Nanoparticle Research, 2022, 24(2): 23.
|
21 |
PAN Y F, GAO D Y, DANG Y P, et al. Bimetallic electronic effects of Mn-doped Ni-MOF shuttle-like nanosheets remarkably enhance the supercapacitive performance[J]. Inorganic Chemistry Frontiers, 2022, 9(22): 5982-5993.
|
22 |
BABU S K, RAJ J J D, VIJAYAKUMAR T, et al. Experimental and DFT studies on spinel NiMn2O4 flower derived from bimetallic MOF as an efficient electrode for next-generation supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130244.
|
23 |
朱涛. 高容量超级电容器电极材料的制备与性能研究[D]. 上海: 上海大学, 2016.
|
|
ZHU T. Studies on synthesis and electrochemical properties of high capacity electrode materials for supercapacitor applications[D]. Shanghai: Shanghai University, 2016.
|
24 |
YUAN H, GUO Y M, JIANG L H. A porous MOF-derived NiMn2O4 material and its superior energy storage performance for high-performance supercapacitors[J]. New Journal of Chemistry, 2022, 46(12): 5741-5750.
|
25 |
王跃迪, 仇中柱, 吴渺, 等. 多孔NiMoO4/NiCo2S4复合材料的制备及其电化学性能[J]. 储能科学与技术, 2023, 12(4): 1034-1044.
|
|
WANG Y D, QIU Z Z, WU M, et al. Preparation and electrochemical properties of porous NiMoO4/NiCo2S4 composites[J]. Energy Storage Science and Technology, 2023, 12(4): 1034-1044.
|
26 |
祝玉婷, 闫共芹, 林羽芊. MoS2/RGO复合材料的电化学性能和第一性原理研究[J]. 储能科学与技术, 2023, 12(3): 698-709.
|
|
ZHU Y T, YAN G Q, LIN Y Q. Electrochemical properties and First-principles study of MoS2/rGO composite[J]. Energy Storage Science and Technology, 2023, 12(3): 698-709.
|
27 |
蔡婷婷, 刘镕玮, 王媛媛, 等. 镍钴硫化物/碳微球电极的制备与电化学性能测试[J]. 化工新型材料, 2018, 46(8): 119-122.
|
|
CAI T T, LIU R W, WANG Y Y, et al. Preparation and electrochemical performance test of nickel cobalt sulfide/carbon microsphere electrode[J]. New Chemical Materials, 2018, 46(8): 119-122.
|