1 |
南明君, 乔琳, 刘玉琴, 等. 无机水系液流电池研究[J]. 化学进展, 2022, 34(6): 1402-1413.
|
|
NAN M J, QIAO L, LIU Y Q, et al. A review of inorganic aqueous flow battery[J]. Progress in Chemistry, 2022, 34(6): 1402-1413.
|
2 |
谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057.
|
|
XIE C X, ZHENG Q, LI X F, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057.
|
3 |
张君慧, 曾义凯, 袁雨峰, 等. 铁铬液流电池关键材料研究进展[J]. 制冷与空调(四川), 2023, 37(1): 129-136.
|
|
ZHANG J H, ZENG Y K, YUAN Y F, et al. Research progress on key materials of the iron-chromium flow battery[J]. Refrigeration & Air Conditioning, 2023, 37(1): 129-136.
|
4 |
TIEMANN P H, BENSMANN A, STUKE V, et al. Electrical energy storage for industrial grid fee reduction-A large scale analysis[J]. Energy Conversion and Management, 2020, 208: 112539.
|
5 |
M GÜR T. Correction: Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 3055.
|
6 |
JAVED M S, MA T, JURASZ J, et al. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives[J]. Renewable Energy, 2020, 148: 176-192.
|
7 |
LEI J Z, GONG Q W. Optimal allocation of a hybrid energy storage system considering its dynamic operation characteristics for wind power applications in active distribution networks[J]. International Journal of Energy Research, 2018, 42(13): 4184-4196.
|
8 |
SUN C Y, ZHANG H. Review of the development of first-generation redox flow batteries: Iron-chromium system[J]. ChemSusChem, 2022, 15(1): e202101798.
|
9 |
CHENG D S, REINER A, HOLLAX E. Activation of hydrochloric acid-CrCl3 ·6H2 solutions with N-alkyfamines[J]. Journal of Applied Electrochemistry, 1985, 15(1): 63-70.
|
10 |
GAHN R F, HAGEDORN N, LING J S. Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature[C]//Intersoc. Energy Conversion Engr. Conf, 1983
|
11 |
AHN Y, MOON J, PARK S E, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal, 2021, 421: 127855.
|
12 |
REN H L, SU Y, ZHAO S, et al. Research on the performance of cobalt oxide decorated graphite felt as electrode of iron-chromium flow battery[J]. ChemElectroChem, 2023, 10(5): e202201146.
|
13 |
JIANG Y Q, CHENG G, LI Y H, et al. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework[J]. Chemical Engineering Journal, 2021, 415: 129014.
|
14 |
NGUYEN V H, NGUYEN T D, VAN NGUYEN T. Microwave-assisted solvothermal synthesis and photocatalytic activity of bismuth(III) based metal-organic framework[J]. Topics in Catalysis, 2020, 63(11): 1109-1120.
|
15 |
XU J Y, XIE Y Y, ZHENG J Q, et al. A sodiophilic carbon cloth decorated with Bi-MOF derived porous Bi@C nanosheets for stable Na metal anode[J]. Journal of Electroanalytical Chemistry, 2021, 903: 115853.
|
16 |
TRÖBS L, WILKE M, SZCZERBA W, et al. Mechanochemical synthesis and characterisation of two new bismuth metal organic frameworks[J]. CrystEngComm, 2014, 16(25): 5560-5565.
|
17 |
GAO Y, YI X H, WANG C C, et al. Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst[J]. Materials Research Bulletin, 2023, 158: 112072.
|
18 |
SCHALENBACH M. Impedance spectroscopy and cyclic voltammetry to determine double layer capacitances and electrochemically active surface areas[DB/OL]. (2018-12-31) https://api.semanticscholar.org/CorpusID:239437296.
|
19 |
FRANZ S, ARAB H, CHIARELLO G L, et al. Single-step preparation of large area TiO2 photoelectrodes for water splitting[J]. Advanced Energy Materials, 2020, 10(23): 2000652.
|
20 |
冯晓健. 全钒液流电池碳纤维/金属氧化物复合电极的构建及性能研究[D]. 唐山: 华北理工大学, 2022.
|
|
FENG X J. Construction and properties of carbon fiber/metal oxide composite electrode for vanadium flow battery[D]. Tangshan: North China University of Science and Technology, 2022.
|
21 |
褚夫军. Cr3+/Cr2+氧化还原电对性能及其在液流电池中的应用研究[D]. 北京: 北京化工大学, 2022.
|
|
CHU F J. Performance of Cr3+/Cr2+ redox couple and its application in flow battery[D]. Beijing: Beijing University of Chemical Technology, 2022.
|
22 |
ZHANG F F, HUANG S P, WANG X, et al. Redox-targeted catalysis for vanadium redox-flow batteries[J]. Nano Energy, 2018, 52: 292-299.
|