储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 1009-1018.doi: 10.19799/j.cnki.2095-4239.2023.0754

• 储能测试与评价 • 上一篇    下一篇

多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法

刘佳1(), 马志强1,3(), 刘广忱2,3, 高俊东1, 李宏勋1   

  1. 1.内蒙古工业大学数据科学与应用学院
    2.内蒙古工业大学大学电力学院
    3.大规模储能技术;教育部工程研究中心,内蒙古 呼和浩特 010080
  • 收稿日期:2023-10-30 修回日期:2023-11-08 出版日期:2024-03-28 发布日期:2024-03-28
  • 通讯作者: 马志强 E-mail:liu_jia0429@126.com;mzq_bim@imut.edu.cn
  • 作者简介:刘佳(2000—),女,硕士研究生,研究方向为深度学习、时间序列预测,E-mail:liu_jia0429@126.com
  • 基金资助:
    国家自然基金(62166029);内蒙古自治区高等学校碳达峰碳中和研究项目(STZX202307)

Predicting the residual useful life of power batteries based on the GRUU-TCN ensemble under multiscale decomposition

Jia LIU1(), Zhiqiang MA1,3(), Guangchen LIU2,3, Jundong GAO1, Hongxun LI1   

  1. 1.College of Data Science and Application, Inner Mongolia University of Technology
    2.College of Electric Power, Inner Mongolia University of Technology
    3.Engineering Research Center of large-scale Energy Storage Technology, Ministry of Education, Hohhot 010080, Inner Mongolia, China
  • Received:2023-10-30 Revised:2023-11-08 Online:2024-03-28 Published:2024-03-28
  • Contact: Zhiqiang MA E-mail:liu_jia0429@126.com;mzq_bim@imut.edu.cn

摘要:

精准预测动力电池的剩余使用寿命(remaining useful life,RUL)能够提前规避因电池过度使用带来的风险,为退役电池的二次利用提供决策依据,提升电池第二寿命的利用率。为了降低动力电池RUL预测任务中噪声和容量回升现象导致的非线性特征对RUL预测精度的影响,提出了一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)、门控循环单元网络(gated recurrent unit,GRU)和时序卷积网络(temporal convolutional networks,TCN)集成的动力电池RUL预测模型。首先,使用EEMD对原始数据进行分解,动力电池容量衰退过程中由噪声和容量回升现象导致的非线性特征被分解到高频分量,而原始容量数据的主要趋势被分解到低频分量。其次,再使用GRU和TCN网络分别对高频分量和低频分量进行预测。最后,使用Attention对预测结果进行集成。在NASA数据集上的实验结果表明,本工作提出的集成模型的预测精度和对非线性特征的拟合程度都优于其他单一模型和其他同类型模型,最大平均绝对误差和最大均方根误差分别在0.52%和0.74%内,绝对误差在1个循环周期内,证明本模型有较好的RUL预测能力。

关键词: 动力电池, 剩余使用寿命, 经验模态分解, 门控循环单元网络, 时序卷积网络

Abstract:

Accurate prediction of the remaining useful life (RUL) of power batteries can avoid the risk of battery overuse, inform decision making on the secondary use of retired batteries, and improve the utilization rate of second-life batteries. We propose a method based on ensemble empirical mode decomposition (EEMD), gated recurrent units (GRUs), and temporal recurrent unit networks to reduce the dependence of RUL prediction accuracy on nonlinear features (this dependence is caused by noise and capacity recovery in the power battery RUL prediction task). GRU and temporal convolutional networks (TCNs) are integrated into the RUL prediction model for power batteries. First, the raw data are decomposed using EEMD, and the nonlinear features caused by noise and capacity rebound during power battery capacity decline are decomposed into high-frequency components. The main trends of the raw capacity data are decomposed into low-frequency components. Next, GRUs and TCNs are used to predict the high- and low-frequency components, respectively. Finally, the predictions are integrated using attention. The experimental results on the NASA dataset show that the prediction accuracy and the fitting of nonlinear features of the integrated model proposed in this paper are better than those of other single models and other models of the same type, with the maximum average absolute error and the maximum root-mean-square error within 0.52% and 0.74%, respectively, and the absolute error within one cycle period. These results prove that the proposed model produced more accurate predictions of the RUL than conventional models.

Key words: power battery, remaining service life, empirical mode decomposition, gated recurrent unit network, temporal convolutional networks

中图分类号: