1 |
RAZMJOO A, GAKENIA KAIGUTHA L, VAZIRI RAD M A, et al. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2[J]. Renewable Energy, 2021, 164: 46-57.
|
2 |
YANG Q, ZHOU H W, BARTOCCI P, et al. Prospective contributions of biomass pyrolysis to China's 2050 carbon reduction and renewable energy goals[J]. Nature Communications, 2021, 12: 1698.
|
3 |
RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: 113295.
|
4 |
ARBABZADEH M, SIOSHANSI R, JOHNSON J X, et al. The role of energy storage in deep decarbonization of electricity production[J]. Nature Communications, 2019, 10: 3413.
|
5 |
LIU J Q, HU C, KIMBER A, et al. Uses, cost-benefit analysis, and markets of energy storage systems for electric grid applications[J]. Journal of Energy Storage, 2020, 32: 101731.
|
6 |
GE Z W, LI Y L, LI D C, et al. Thermal energy storage: Challenges and the role of particle technology[J]. Particuology, 2014, 15: 2-8.
|
7 |
GAUTAM A, SAINI R P. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications[J]. Solar Energy, 2020, 207: 937-956.
|
8 |
JIANG Z, PALACIOS A, ZOU B Y, et al. A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112134.
|
9 |
ZHANG Y L, MIAO Q, JIA X, et al. Diatomite-based magnesium sulfate composites for thermochemical energy storage: Preparation and performance investigation[J]. Solar Energy, 2021, 224: 907-915.
|
10 |
PANCHAL J M, MODI K V, PATEL V J. Development in multiple-phase change materials cascaded low-grade thermal energy storage applications: A review[J]. Cleaner Engineering and Technology, 2022, 8: 100465.
|
11 |
吴娟, 毕月虹, 鲁一涵. 固体电蓄热技术研究现状及展望[J]. 电力需求侧管理, 2022, 24(2): 65-71.
|
|
WU J, BI Y H, LU Y H. Research status and prospect of solid electric heat storage technology[J]. Power Demand Side Management, 2022, 24(2): 65-71.
|
12 |
尹浩, 唐志伟, 王昊, 等. 基于高密度复合相变储热材料电热锅炉的分时配比供热系统[J]. 储能科学与技术, 2022, 11(9): 3003-3010.
|
|
YIN H, TANG Z W, WANG H, et al. Investigation on a time-sharing heating system using a high-density composite phase change heat storage material-an electric boiler[J]. Energy Storage Science and Technology, 2022, 11(9): 3003-3010.
|
13 |
刘圣冠, 乔磊, 翟鹏程, 等. 蓄热电锅炉供热技术及工程应用[J]. 热力发电, 2020, 49(8): 91-96.
|
|
LIU S G, QIAO L, ZHAI P C, et al. Technology and engineering application of heating with thermal storage electric boiler[J]. Thermal Power Generation, 2020, 49(8): 91-96.
|
14 |
吴佳睿, 汉京晓, 唐志伟, 等. 高温相变蓄热电锅炉代替市政热水的应急系统[J]. 节能, 2020, 39(1): 54-56.
|
|
WU J R, HAN J X, TANG Z W, et al. Emergency system of replacing municipal hot water with high temperature phase change thermal storage electric boiler[J]. Energy Conservation, 2020, 39(1): 54-56.
|