1 |
中国能源研究会储能专委会, 中关村储能产业技术联盟. 储能产业研究白皮书2023(摘要版). [R/OL].(2023-05-17)[2023-09-29]. https://cpnn.com.cn/news/baogao2023/202307/W020230725381488198635.pdf.
|
2 |
LU M Y, ZHANG X L, JI J, et al. Research progress on power battery cooling technology for electric vehicles[J]. Journal of Energy Storage, 2020, 27: 101155.
|
3 |
CHEN J W, KANG S Y, JIAQIANG E, et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review[J]. Journal of Power Sources, 2019, 442: 227228.
|
4 |
QIN P, SUN J H, YANG X L, et al. Battery thermal management system based on the forced-air convection: A review[J]. eTransportation, 2021, 7: 100097.
|
5 |
PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382.
|
6 |
AL-ZAREER M, DINCER I, ROSEN M A. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles[J]. Journal of Power Sources, 2017, 363: 291-303.
|
7 |
CHEN K, SONG M X, WEI W, et al. Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement[J]. Energy, 2018, 145: 603-613.
|
8 |
WANG H T, TAO T, XU J, et al. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries[J]. Applied Thermal Engineering, 2020, 178: 115591.
|
9 |
郑海, 续彦芳, 刘汉涛, 等. 基于液体介质的锂离子动力电池热管理系统实验分析[J]. 储能科学与技术, 2020, 9(3): 885-891.
|
|
ZHENG H, XU Y F, LIU H T, et al. Experimental analysis of thermal management system of lithium ion power battery based on liquid medium[J]. Energy Storage Science and Technology, 2020, 9(3): 885-891.
|
10 |
陈雅, 范立云, 李晶雪, 等. 二次流蛇形通道锂离子电池散热性能[J]. 储能科学与技术, 2023, 12(6): 1880-1889.
|
|
CHEN Y, FAN L Y, LI J X, et al. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel[J]. Energy Storage Science and Technology, 2023, 12(6): 1880-1889.
|
11 |
SUN X Q, ZHANG C, HAN Z W, et al. Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers[J]. Energy, 2023, 274: 127335.
|
12 |
HOU F Z, WANG W B, ZHANG H Y, et al. Experimental evaluation of a compact two-phase cooling system for high heat flux electronic packages[J]. Applied Thermal Engineering, 2019, 163: 114338.
|
13 |
HONG S H, JANG D S, PARK S, et al. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles[J]. Applied Thermal Engineering, 2020, 173: 115213.
|
14 |
WANG Z R, HUANG L P, HE F. Design and analysis of electric vehicle thermal management system based on refrigerant-direct cooling and heating batteries[J]. Journal of Energy Storage, 2022, 51: 104318.
|
15 |
YANG K J, LI Y H, YUAN J, et al. A thermal management system for an energy storage battery container based on cold air directional regulation[J]. Journal of Energy Storage, 2023, 61: 106679.
|
16 |
XIN-YU, YI-WEN, JING-TANG. Inlet setting strategy via machine learning algorithm for thermal management of container-type battery energy-storage systems (BESS)[J]. International Journal of Heat and Mass Transfer, 2024, 218: 124712.
|
17 |
邹燚涛, 裴后举, 施红, 等. 某型集装箱储能电池组冷却风道设计及优化[J]. 储能科学与技术, 2020, 9(6): 1864-1871.
|
|
ZOU Y T, PEI H J, SHI H, et al. Design and optimization of the cooling duct system for the battery pack of a certain container energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1864-1871.
|
18 |
LI Z, ZHANG J B, WU B, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples[J]. Journal of Power Sources, 2013, 241: 536-553.
|