储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1929-1939.doi: 10.19799/j.cnki.2095-4239.2024.0045

• 储能系统与工程 • 上一篇    下一篇

液态空气储能耦合综合能源系统热电联储联供优化配置研究

黄思远1(), 王晨2(), 梁婷3, 姜竹1, 李佳静2, 折晓会2, 张小松1()   

  1. 1.东南大学能源与环境学院,江苏 南京 211189
    2.石家庄铁道大学低温能源转换存储与输运研究中心,河北 石家庄 050043
    3.伯明翰大学储能研究中心,英国 伯明翰 B15 2TT
  • 收稿日期:2024-01-12 修回日期:2024-01-22 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 王晨,张小松 E-mail:hsy000125@163.com;wangchen@stdu.edu.cn;rachpe@seu.edu.cn
  • 作者简介:黄思远(1999—),男,硕士研究生,研究方向为液态空气储能及综合能源系统配置优化,E-mail:hsy000125@163.com
  • 基金资助:
    江苏省科技厅重大科技示范项目(BE2022606);河北省科技厅青年科学基金项目(E2023210052);河北省教育厅青年拔尖人才项目(BJK2024189)

Research on optimal configuration for integrated energy system with liquid air energy storage combined heat and power supply

Siyuan HUANG1(), Chen WANG2(), Ting LIANG3, Zhu JIANG1, Jiajing LI2, Xiaohui SHE2, Xiaosong ZHANG1()   

  1. 1.School of Energy and Environment, Southeast University, Nanjing 211189, Jiangsu, China
    2.Cryogenic Energy Conversion, Storage and Transportation Centre, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China
    3.Birmingham Centre for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK
  • Received:2024-01-12 Revised:2024-01-22 Online:2024-06-28 Published:2024-06-26
  • Contact: Chen WANG, Xiaosong ZHANG E-mail:hsy000125@163.com;wangchen@stdu.edu.cn;rachpe@seu.edu.cn

摘要:

液态空气储能(LAES)在多能耦合的综合能源系统中极具应用前景,合理的储能容量配置更有利于综合能源系统低碳经济运行,但目前研究未充分考虑LAES热电联储联供强相关的特性和优势。因此,本文提出了一种LAES耦合综合能源系统的热电联储联供优化配置方法,针对综合能源系统的基本架构,构建了各组成单元的热电联储/供调度约束模型,并以设备初始投资成本、设备运维成本、购能成本、弃风弃光成本等为目标函数,考虑了系统能量平衡约束、设备容量约束、设备出力约束、外网交互功率约束以及储能约束,建立了相应的优化配置模型,并基于混合整数线性规划方法进行模型求解。以某实际园区为例,设置了5种场景进行优化结果对比分析,结果表明:考虑LAES热电联储联供特性的综合能源系统能实时有效地满足系统用能需求,同时能实现更好的经济效益和环境效益,相较于传统分供系统,系统总经济成本下降37.1%,实现碳减排71.50%,并在消纳可再生能源和减少弃光弃风方面更具潜力。本研究可为LAES耦合系统热电联储联供优化模型的有效性提供理论依据,有助于推动LAES在综合能源系统中的商业化应用。

关键词: 液态空气储能, 综合能源系统, 热电联储联供, 配置优化, 混合整数线性规划

Abstract:

Liquid air energy storage (LAES) has significant potential for use in multi-energy coupled integrated energy systems. Appropriately configuring energy storage capacity can enhance the low-carbon and economic operation of these systems. However, current research has yet to fully account for the combined heat and power supply characteristics of LAES. Therefore, this study proposes a configuration optimization method for a combined heat and power supply LAES-coupled integrated energy system. Based on the foundational architecture of the integrated energy system, we develop heat and power co-supply and constraint models for system components. The system's total annual cost, encompassing the initial equipment investment, operation and maintenance costs, energy purchase expenses, and penalties for solar and wind energy abandonment, serves as the objective function. Considering the constraints of system energy balance, equipment capacity, equipment output, interaction with external networks, and energy storage constraints, we establish an optimal configuration model. This model is solved using the mixed-integer linear programming method. A real-world park scenario is used to set up five different scenarios for comparative analysis of optimization results. The simulation findings demonstrate that an integrated energy system incorporating LAES heat and power co-supply can effectively meet real-time system energy demands while achieving better economic and environmental outcomes. Compared with traditional sub-supply systems, the integrated approach reduces total costs by 37.1% and carbon emissions by 71.50%. It also offers substantial benefits in terms of lowering carbon emissions and minimizing wind and solar energy waste. This study provides a theoretical basis for the effectiveness of the optimization model for a heat and power co-supply LAES-coupled system and promotes the commercial application of LAES in integrated energy systems.

Key words: liquid air energy storage, integrated energy system, combined heat and power supply, allocation optimization, mixed integer linear programming

中图分类号: