储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2361-2376.doi: 10.19799/j.cnki.2095-4239.2024.0533
郝峻丰(), 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2024-06-17
修回日期:
2024-07-01
出版日期:
2024-07-28
发布日期:
2024-06-25
通讯作者:
黄学杰
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
郝峻丰(1999—),男,博士研究生,研究方向为锂离子电池,E-mail:haojunfeng21@mails.ucas.ac.cn;
Junfeng HAO(), Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2024-06-17
Revised:
2024-07-01
Online:
2024-07-28
Published:
2024-06-25
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2024年4月1日至2024年5月31日上线的锂电池研究论文,共有6423篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元、富锂正极材料的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变。合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变化,维持电极完整性。固态电解质的研究主要包括对现有固态电解质的合成、掺杂、结构设计、稳定性和相关性能研究以及对新型固态电解质的探索。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注于复合正极设计、界面改性和影响锂枝晶生长的因素,出现了更多关于固态锂硫电池的研究论文。液体电解质电池技术偏重复合锂硫正极、锂硫电池“穿梭效应”的抑制、新电极制备技术以及锂界面枝晶及副反应抑制等。关于电池产热和气体成分、失效机制、热失控、界面稳定性的测量和分析论文也有多篇。
中图分类号:
郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376.
Junfeng HAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. A review of 100 selected recent studies on lithium batteries (April 1, 2024—May 31, 2024)[J]. Energy Storage Science and Technology, 2024, 13(7): 2361-2376.
1 | SUN Y J, WANG Y S, WANG S, et al. Bulk-to-surface engineering allows for extremely stable co-free Ni-rich cathodes for rechargeable batteries[J]. Journal of Materials Science, 2023, 58(25): 10428-10440. DOI: 10.1007/s10853-023-08676-0. |
2 | LI C, LIN Y, LIU J, et al. Liquid-phase preparation of low-tortuosity composite cathode for high active material content all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024: 2400985. DOI: 10.1002/aenm.202400985. |
3 | ZHAO C, WANG C W, LIU X, et al. Suppressing strain propagation in ultrahigh-Ni cathodes during fast charging via epitaxial entropy-assisted coating[J]. Nature Energy, 2024, 9: 345-356. DOI: 10.1038/s41560-024-01465-2. |
4 | LIU Z F, ZHENG S, ZHOU Y K, et al. Enhancing the electrochemical performance of single-crystal LiNi0.8Co0.1Mn0.1O2 cathode material by phosphorus doping[J]. Chemical Engineering Science, 2024, 285: 119627. DOI: 10.1016/j.ces.2023.119627. |
5 | RYU H H, LIM H W, LEE S G, et al. Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries[J]. Nature Energy, 2024, 9: 47-56. DOI: 10.1038/s41560-023-01403-8. |
6 | TIAN J S, WANG G, ZENG W H, et al. A bimetal strategy for suppressing oxygen release of 4.6V high-voltage single-crystal high-nickel cathode[J]. Energy Storage Materials, 2024, 68: 103344. DOI: 10.1016/j.ensm.2024.103344. |
7 | WANG L L, MUKHERJEE A, KUO C Y, et al. High-energy all-solid-state lithium batteries enabled by co-free LiNiO2 cathodes with robust outside-in structures[J]. Nature Nanotechnology, 2024, 19(2): 208-218. DOI: 10.1038/s41565-023-01519-8. |
8 | WANG Y Y, LIANG Z M, LIU Z C, et al. Synergy of epitaxial layer and bulk doping enables structural rigidity of cobalt-free ultrahigh-nickel oxide cathode for lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(52): 2308152. DOI: 10.1002/adfm.202308152. |
9 | LEE D, MESNIER A, MANTHIRAM A. Crack-free single-crystalline LiNiO2 for high energy density all-solid-state batteries[J]. Advanced Energy Materials, 2024, 14(19): 2303490. DOI: 10.1002/aenm.202303490. |
10 | WANG Q D, YAO Z P, WANG J L, et al. Chemical short-range disorder in lithium oxide cathodes[J]. Nature, 2024, 629(8011): 341-347. DOI: 10.1038/s41586-024-07362-8. |
11 | CAI Z J, OUYANG B, HAU H M, et al. In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials[J]. Nature Energy, 2024, 9: 27-36. DOI: 10.1038/s41560-023-01375-9. |
12 | CAO J Q, SHI Y S, GAO A S, et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries[J]. Nature Communications, 2024, 15(1): 1354. DOI: 10.1038/s41467-024-45613-4. |
13 | LI F H, WU H, WEN H, et al. Constructing a stable integrated silicon electrode with efficient lithium storage performance through multidimensional structural design[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8802-8812. DOI: 10.1021/acsami.3c17326. |
14 | LIU W J, SU S X, WANG Y, et al. Constructing a stable conductive network for high-performance silicon-based anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10703-10713. DOI: 10.1021/acsami.3c17942. |
15 | WANG L, LU J J, LI S Y, et al. Controllable interface engineering for the preparation of high rate silicon anode[J]. Advanced Functional Materials, 2024: 2403574. DOI: 10.1002/adfm.202403574. |
16 | YU X R, WANG Z C, DENG X, et al. Amide-modulated gel electrolytes enable nickel-rich cathodes with enhanced interphase stability at 90 ℃[J]. ACS Energy Letters, 2024, 9(4): 1826-1834. DOI: 10.1021/acsenergylett.4c00379. |
17 | GICHA B B, TUFA L T, NWAJI N, et al. Advances in all-solid-state lithium-sulfur batteries for commercialization[J]. Nano-Micro Letters, 2024, 16(1): 172. DOI: 10.1007/s40820-024-01385-6. |
18 | ZHANG D C, LIU Y X, YANG S, et al. Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries[J]. Advanced Materials, 2024: 2401549. DOI: 10.1002/adma.202401549. |
19 | RUI X Y, HUA R, REN D S, et al. In situ polymerization facilitating practical high-safety quasi-solid-state batteries[J]. Advanced Materials, 2024: e2402401. DOI: 10.1002/adma.202402401. |
20 | WANG H C, YANG Y L, GAO C, et al. An entanglement association polymer electrolyte for Li-metal batteries[J]. Nature Communications, 2024, 15(1): 2500. DOI: 10.1038/s41467-024-46883-8. |
21 | ZHANG W R, KOVERGA V, LIU S F, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024, 9: 386-400. DOI: 10.1038/s41560-023-01443-0. |
22 | LIU Y X, WANG S Q, CHEN W C, et al. 5.1µm ion-regulated rigid quasi-solid electrolyte constructed by bridging fast Li-ion transfer channels for lithium metal batteries[J]. Advanced Materials, 2024: 2401837. DOI: 10.1002/adma.202401837. |
23 | GAO Y J, ZHANG S M, ZHAO F P, et al. Fluorinated superionic oxychloride solid electrolytes for high-voltage all-solid-state lithium batteries[J]. ACS Energy Letters, 2024, 9(4): 1735-1742. DOI: 10.1021/acsenergylett.3c02243. |
24 | YANG K, MA J B, LI Y H, et al. Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries[J]. Journal of the American Chemical Society, 2024: DOI: 10.1021/jacs.4c00976. |
25 | WU Q, FANG M D, JIAO S Z, et al. Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries[J]. Nature Communications, 2023, 14(1): 6296. DOI: 10.1038/s41467-023-41808-3. |
26 | AIMI A, ONODERA H, SHIMONISHI Y, et al. High Li-ion conductivity in pyrochlore-type solid electrolyte Li2- xLa(1+ x)/3M2O6F (M = Nb, Ta)[J]. Chemistry of Materials, 2024, 36(8): 3717-3725. DOI: 10.1021/acs.chemmater.3c03288. |
27 | CHIEN P H, OUYANG B, FENG X Y, et al. Promoting fast ion conduction in Li-argyrodite through lithium sublattice engineering[J]. Chemistry of Materials, 2024, 36(1): 382-393. DOI: 10.1021/acs.chemmater.3c02269. |
28 | POUDEL T P, DECK M J, WANG P B, et al. Transforming Li3PS4 via halide incorporation: A path to improved ionic conductivity and stability in all-solid-state batteries[J]. Advanced Functional Materials, 2024, 34(4): 2309656. DOI: 10.1002/adfm.202309656. |
29 | WANG D X, SHI H T, CUI W H, et al. Li-argyrodite solid-state electrolytes with lithium compatibility and air stability for all-solid-state batteries[J]. Journal of Materials Chemistry A, 2024, 12(18): 10863-10874. DOI: 10.1039/D3TA07453F. |
30 | KIM Y, JUAREZ-YESCAS C, LIAO D W, et al. Thin free-standing sulfide/halide bilayer electrolytes for solid-state batteries using slurry processing and lamination[J]. ACS Energy Letters, 2024, 9(4): 1353-1360. DOI: 10.1021/acsenergylett.4c00092. |
31 | SONG Z Y, WANG T R, YANG H, et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nature Communications, 2024, 15(1): 1481. DOI: 10.1038/s41467-024-45864-1. |
32 | ZHAN X, LI M, ZHAO X L, et al. Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries[J]. Nature Communications, 2024, 15(1): 1056. DOI: 10.1038/s41467-024-45372-2. |
33 | JIANG Z P, YANG T, LI C, et al. Synergistic additives enabling stable cycling of ether electrolyte in 4.4V Ni-rich/Li metal batteries[J]. Advanced Functional Materials, 2023, 33(51): 2306868. DOI: 10.1002/adfm.202306868. |
34 | ZHANG Y M, CAO Y, ZHANG B S, et al. Rational molecular engineering via electron reconfiguration toward robust dual-electrode/electrolyte interphases for high-performance lithium metal batteries[J]. ACS Nano, 2024, 18(22): 14764-14778. DOI: 10.1021/acsnano.4c04517. |
35 | DENG C L, YANG B B, LIANG Y H, et al. Bipolar polymeric protective layer for dendrite-free and corrosion-resistant lithium metal anode in ethylene carbonate electrolyte[J]. Angewandte Chemie International Edition, 2024, 63(17): e202400619. DOI: 10.1002/anie.202400619. |
36 | KUBOT M, BALKE L, SCHOLZ J, et al. High-voltage instability of vinylene carbonate (VC): Impact of formed poly-VC on interphases and toxicity[J]. Advanced Science, 2024, 11(1): e2305282. DOI: 10.1002/advs.202305282. |
37 | LI Y X, DING F W, SHAO Y Y, et al. Solvation structure and derived interphase tuning for high-voltage Ni-rich lithium metal batteries with high safety using gem-difluorinated ionic liquid based dual-salt electrolytes[J]. Angewandte Chemie International Edition, 2024, 63(8): 2317148. DOI: 10.1002/anie.202317148. |
38 | DEGUCHI M, TAZOE D, TODOROV Y M, et al. Functional electrolyte: Highly-safe LIB using branched carboxylic acid ester as electrolyte additive[J]. Journal of the Electrochemical Society, 2024, 171(4): 040536. DOI: 10.1149/1945-7111/ad39cb. |
39 | TUUL K, MAHER S M, FLORAS C, et al. Exceptional performance of Li-ion battery cells with liquid electrolyte at 100 ℃[J]. Journal of the Electrochemical Society, 2024, 171(4): 040510. DOI: 10.1149/1945-7111/ad36e7. |
40 | YANG G L, HUANG Z H, MAJEED I, et al. A straightforward approach to improve NCM523/graphite pouch battery performance in a wide temperature range at 4.35 V using film-forming additive N-phenylimidodisulfuryl fluoride (PhFSI)[J]. Journal of Materials Chemistry A, 2024, 12(17): 10242-10251. DOI: 10.1039/D4TA00311J. |
41 | YU H F, YANG Z F, HAN Q, et al. Operando building of a superior interface hybrid film enables chemomechanically durable co-free Ni-rich cathodes[J]. ACS Nano, 2024, 18(20): 13428-13436. DOI: 10.1021/acsnano.4c04125. |
42 | ZHANG Y L, CHEN Y Q, HE Q, et al. Interface engineering strategy via electron-defect trimethyl borate additive toward 4.7 V ultrahigh-nickel LiNi0.9Co0.05Mn0.05O2 battery[J]. Journal of Energy Chemistry, 2024, 92: 639-647. DOI: 10.1016/j.jechem.2024.02.004. |
43 | FAN X Y, LIU M T, CHEN T L, et al. Reconstructing inorganic-rich interphases by nonflammable electrolytes for high-voltage and low-temperature LiNi0.5Mn1.5O4 cathodes[J]. Advanced Functional Materials, 2024: 2400996. DOI: 10.1002/adfm.202400996. |
44 | BAI Z W, YING Z H, ZHANG F Q, et al. Enabling high stability of co-free LiNiO2 cathode via a sulfide-enriched cathode electrolyte interface[J]. ACS Energy Letters, 2024, 9(6): 2717-2726. DOI: 10.1021/acsenergylett.4c00652. |
45 | CHEN S M, ZHENG G R, YAO X M, et al. Constructing matching cathode-anode interphases with improved chemo-mechanical stability for high-energy batteries[J]. ACS Nano, 2024, 18(8): 6600-6611. DOI: 10.1021/acsnano.3c12823. |
46 | LI A M, BORODIN O, POLLARD T P, et al. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nature Chemistry, 2024, 16(6): 922-929. DOI: 10.1038/s41557-024-01497-x. |
47 | LI W, WANG H W, ZHANG J K, et al. Non-sacrificial additive enables a non-passivating cathode interface for 4.6V Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2024, 14(11): 2303458. DOI: 10.1002/aenm.202303458. |
48 | CHENG H R, MA Z, KUMAR P, et al. Non-flammable electrolyte mediated by solvation chemistry toward high-voltage lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(4): 1604-1616. DOI: 10.1021/acsenergylett.3c02789. |
49 | CUI Z Z, JIA Z Z, RUAN D G, et al. Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries[J]. Nature Communications, 2024, 15(1): 2033. DOI: 10.1038/s41467-024-46186-y. |
50 | HU X, YU J H, WANG Y, et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(7): 2308275. DOI: 10.1002/adma.202308275. |
51 | NIE L, ZHU J L, WU X Y, et al. A large-scale fabrication of flexible, ultrathin, and robust solid electrolyte for solid-state lithium-sulfur batteries[J]. Advanced Materials, 2024: e2400115. DOI: 10.1002/adma.202400115. |
52 | POKHAREL J, CRESCE A, PANT B, et al. Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries[J]. Nature Communications, 2024, 15(1): 3085. DOI: 10.1038/s41467-024-47521-z. |
53 | GUO Y, PAN S Y, YI X R, et al. Fluorinating all interfaces enables super-stable solid-state lithium batteries by in situ conversion of detrimental surface Li2CO3[J]. Advanced Materials, 2024, 36(13): e2308493. DOI: 10.1002/adma.202308493. |
54 | KIM K H, LEE M J, RYU M, et al. Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries[J]. Nature Communications, 2024, 15(1): 3586. DOI: 10.1038/s41467-024-48021-w. |
55 | YE L H, LU Y, WANG Y C, et al. Fast cycling of lithium metal in solid-state batteries by constriction-susceptible anode materials[J]. Nature Materials, 2024, 23(2): 244-251. DOI: 10.1038/s41563-023-01722-x. |
56 | CAO Q B, SUN Z T, YE K, et al. Stacking pressure homogenizes the electrochemical lithiation reaction of silicon anode in solid-state batteries[J]. Energy Storage Materials, 2024, 67: 103246. DOI: 10.1016/j.ensm.2024.103246. |
57 | SU H, LI J R, ZHONG Y, et al. A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries[J]. Nature Communications, 2024, 15(1): 4202. DOI: 10.1038/s41467-024-48585-7. |
58 | LIM H, JUN S, SONG Y B, et al. Rationally designed conversion-type lithium metal protective layer for all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(12): 2303762. DOI: 10.1002/aenm.202303762. |
59 | WAN H L, ZHANG B, LIU S F, et al. Interface design for high-performance all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(19): 2303046. DOI: 10.1002/aenm.202303046. |
60 | XU X Q, CHU S Y, XU S, et al. Self-constructing a lattice-oxygen-stabilized interface in Li-rich cathodes to enable high-energy all-solid-state batteries[J]. Energy & Environmental Science, 2024, 17(9): 3052-3059. DOI: 10.1039/D4EE00938J. |
61 | ZHANG H S, LEI X C, SU D, et al. Surface lattice modulation enables stable cycling of high-loading All-solid-state batteries at high voltages[J]. Angewandte Chemie International Edition, 2024, 63(16): e202400562. DOI: 10.1002/anie.202400562. |
62 | CHEN Y T, JANG J, OH J A S, et al. Enabling uniform and accurate control of cycling pressure for all-solid-state batteries[J]. Advanced Energy Materials, 2024: 2304327. DOI: 10.1002/aenm.202304327. |
63 | LU P S, GONG S, WANG C H, et al. Superior low-temperature all-solid-state battery enabled by high-ionic-conductivity and low-energy-barrier interface[J]. ACS Nano, 2024, 18(10): 7334-7345. DOI: 10.1021/acsnano.3c07023. |
64 | KIM S Y, BAK S M, JUN K, et al. Revealing dynamic evolution of the anode-electrolyte interphase in all-solid-state batteries with excellent cyclability[J]. Advanced Energy Materials, 2024: 2401299. DOI: 10.1002/aenm.202401299. |
65 | KARGER L, NUNES B N, YUSIM Y, et al. Protective nanosheet coatings for thiophosphate-based all-solid-state batteries[J]. Advanced Materials Interfaces, 2024, 11(14): 2301067. DOI: 10.1002/admi.202301067. |
66 | LEE S, KIM Y, PARK C, et al. Interplay of cathode–halide solid electrolyte in enhancing thermal stability of charged cathode material in all-solid-state batteries[J]. ACS Energy Letters, 2024, 9(4): 1369-1380. DOI: 10.1021/acsenergylett.4c00033. |
67 | HENNEQUART B, PLATONOVA M, CHOMETON R, et al. Atmospheric-pressure operation of all-solid-state batteries enabled by halide solid electrolyte[J]. ACS Energy Letters, 2024, 9(2): 454-460. DOI: 10.1021/acsenergylett.3c02513. |
68 | ZHAO B S, ZHOU C, CHEN P, et al. Synergistic interfacial optimization for high-sulfur-content all-solid-state lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 4679-4688. DOI: 10.1021/acsami.3c16067. |
69 | ZHOU J B, CHANDRAPPA M L H, TAN S, et al. Healable and conductive sulfur iodide for solid-state Li-S batteries[J]. Nature, 2024, 627(8003): 301-305. DOI: 10.1038/s41586-024-07101-z. |
70 | GU J B, HU W X, WU Y Q, et al. Asymmetric sulfur redox paths in sulfide-based all-solid-state lithium-sulfur batteries[J]. Chemistry of Materials, 2024, 36(9): 4403-4416. DOI: 10.1021/acs.chemmater.3c03317. |
71 | XI L, LI Y, ZHANG D C, et al. The contact interface engineering of all-sulfide-based solid state batteries via infiltrating dissoluble sulfide electrolyte[J]. Energy & Environmental Materials, 2023, 6(6): e12461. DOI: 10.1002/eem2.12461. |
72 | LI W, ZHANG M H, SUN X Y, et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator[J]. Nature Communications, 2024, 15: 803. DOI: 10.1038/s41467-024-45087-4. |
73 | QI X Q, JIN X Y, XU H H, et al. Air-stable Li2S cathodes enabled by an in situ-formed Li+ conductor for graphite-Li2S pouch cells[J]. Advanced Materials, 2024, 36(14): 2310756. DOI: 10.1002/adma.202310756. |
74 | YANG Q, CAI J Y, LI G W, et al. Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions[J]. Nature Communications, 2024, 15(1): 3231. DOI: 10.1038/s41467-024-47565-1. |
75 | ZHANG Y F, WANG W Q, JIA Z C, et al. Dual-stage polyporate framework with redox mediator for high loading lithium sulfur batteries[J]. Energy Storage Materials, 2024, 67: 103320. DOI: 10.1016/j.ensm.2024.103320. |
76 | CAO F L, ZHANG X K, JIN Z H, et al. Electronegativity matching of asymmetrically coordinated single-atom catalysts for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(19): 2303893. DOI: 10.1002/aenm.202303893. |
77 | DING Y F, SUN Z T, WU J H, et al. Tuning dual-atom mediator toward high-rate bidirectional polysulfide conversion in Li-S batteries[J]. Journal of Energy Chemistry, 2023, 87: 462-472. DOI: 10.1016/j.jechem.2023.08.032. |
78 | JIA P F, WANG J, ZHENG T L, et al. Boosting cathode activity and anode stability of lithium-sulfur batteries with vigorous iodic species triggered by nitrate[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401055. DOI: 10.1002/anie.202401055. |
79 | CHEN J, GENG X, WANG C Y, et al. An interweaving 3D ion-conductive network binder for high-loading and lean-electrolyte lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2024, 12(18): 11038-11048. DOI: 10.1039/D4TA00451E. |
80 | CHOI H N, KIM H, KIM M J, et al. Constructing the interconnected charge transfer pathways in sulfur composite cathode for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 11076-11083. DOI: 10.1021/acsami.3c18675. |
81 | WANG H M, YUAN H, WANG W W, et al. Accelerating sulfur redox kinetics by electronic modulation and drifting effects of pre-lithiation electrocatalysts[J]. Advanced Materials, 2024, 36(8): 2307741. DOI: 10.1002/adma.202307741. |
82 | FU J Z, GONG X T, JIN W T, et al. Enable superior performance of ultra-high loading electrodes through the cost-efficient solvent-free electrode manufacturing technology[J]. Energy Storage Materials, 2024, 69: 103423. DOI: 10.1016/j.ensm.2024.103423. |
83 | KIM J, PARK K, KIM M, et al. 10 mAh Cm-2 Cathode by Roll-to-Roll Process for Low Cost and High Energy Density Li-Ion Batteries[J]. Advanced Energy Materials, 2024, 14(10): 2303455. DOI: 10.1002/aenm.202303455. |
84 | UZUN K, SHARMA B, FRIEBERG B R, et al. Investigating the structure and performance of electrodes made by dry and wet slurry processes[J]. Journal of the Electrochemical Society, 2024, 171(2): 020516. DOI: 10.1149/1945-7111/ad242d. |
85 | BINDUMADHAVAN K, SURENDRAN V, SURIYAKUMAR S, et al. Dual-functional trisiloxane as binder additive for high volume expansion Li-ion battery electrodes[J]. Journal of Energy Storage, 2024, 77: 109931. DOI: 10.1016/j.est.2023.109931. |
86 | YANG C, LIU X X, ZHU J D, et al. A unique redox active ion-electron conductor enabled 5C fast-charging graphite anode for lithium-ion batteries[J]. Journal of Energy Storage, 2024, 76: 109889. DOI: 10.1016/j.est.2023.109889. |
87 | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel electrolyte[J]. Nature, 2024, 629(8010): 86-91. DOI: 10.1038/s41586-024-07343-x. |
88 | JO S, SEO S, KANG S K, et al. Thermal runaway mechanism in Ni-rich cathode full cells of lithium-ion batteries: The role of multidirectional crosstalk[J]. Advanced Materials, 2024: 2402024. DOI: 10.1002/adma.202402024. |
89 | LIN X, SHEN Y, YU Y, et al. In situ NMR verification for stacking pressure-induced lithium deposition and dead lithium in anode-free lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(14): 2303918. DOI: 10.1002/aenm.202303918. |
90 | ZHANG Q M, WANG Y Z, DENG Q, et al. In situ and real-time monitoring the chemical and thermal evolution of Lithium-ion batteries with single-crystalline Ni-rich layered oxide cathode[J]. Angewandte Chemie International Edition, 2024, 63(18): e202401716. DOI: 10.1002/anie.202401716. |
91 | SIM R, SU L S, DOLOCAN A, et al. Delineating the impact of transition-metal crossover on solid-electrolyte interphase formation with ion mass spectrometry[J]. Advanced Materials, 2024, 36(14): 2311573. DOI: 10.1002/adma.202311573. |
92 | DAHN J R. Investigation of the failure mechanisms of Li-ion pouch cells with Si/graphite composite negative electrodes and single wall carbon nanotube conducting additive[J]. Journal of the Electrochemical Society, 2024, 171(3): 030532. DOI: 10.1149/1945-7111/ad3398. |
93 | CLAUSNITZER M, IHRIG M, CRESSA L, et al. Impact of degradation mechanisms at the cathode/electrolyte interface of garnet-based all-solid-state batteries[J]. Energy Storage Materials, 2024, 67: 103262. DOI: 10.1016/j.ensm.2024.103262. |
94 | ZHANG N, REN G X, LI L L, et al. Dynamical evolution of CO2 and H2O on garnet electrolyte elucidated by ambient pressure X-ray spectroscopies[J]. Nature Communications, 2024, 15: 2777. DOI: 10.1038/s41467-024-47071-4. |
95 | WANG Y C, JI Y C, YIN Z W, et al. Tuning rate-limiting factors for graphite anodes in fast-charging Li-ion batteries[J]. Advanced Functional Materials, 2024: 2401515. DOI: 10.1002/adfm.202401515. |
96 | LIU R L, WEI Z Y, PENG L L, et al. Establishing reaction networks in the 16-electron sulfur reduction reaction[J]. Nature, 2024, 626(7997): 98-104. DOI: 10.1038/s41586-023-06918-4. |
97 | WEBER A, KEIM N, GYULAI A, et al. The role of surface free energy in binder distribution and adhesion strength of aqueously processed LiNi0.5Mn1.5O4 cathodes[J]. Journal of the Electrochemical Society, 2024, 171(4): 040523. DOI: 10.1149/1945-7111/ad3a24. |
98 | MIAO Z Y, XIAO X P, LI J B, et al. Evaluating the effect of binder for sulfurized polyacrylonitrile cathode via optical fiber sensors[J]. Advanced Functional Materials, 2024, 34(5): 2301736. DOI: 10.1002/adfm.202301736. |
99 | CHENG H R, MA Z, KUMAR P, et al. High voltage electrolyte design mediated by advanced solvation chemistry toward high energy density and fast charging lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(18): 2304321. DOI: 10.1002/aenm.202304321. |
100 | REYNOLDS C, FARAJI NIRI M, HIDALGO M F, et al. Impact of formulation and slurry properties on lithium-ion electrode manufacturing[J]. Batteries & Supercaps, 2024, 7(2): e202300396. DOI: 10.1002/batt.202300396. |
[1] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[2] | 陈晓羽, 刘宇, 白一帆, 应佳俊, 吕营, 万利佳, 胡军平, 陈小玲. 镍钴氢氧化物正极材料制备及镍锌电池性能研究[J]. 储能科学与技术, 2024, 13(7): 2377-2385. |
[3] | 李宗迅, 吕秋秋, 赵浩宇, 贺建宇, 刘阳, 孙再洪, 孙凯华, 朱腾龙. 工业尺寸阳极支撑SOFC亚微米GDC隔离层的制备及性能[J]. 储能科学与技术, 2024, 13(7): 2407-2413. |
[4] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[5] | 李想, 刘德重, 袁开, 陈大鹏. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. |
[6] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
[7] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[8] | 赵飞, 陈英华, 马征, 李茜, 明军. 钾离子电池低温电解质的研究进展[J]. 储能科学与技术, 2024, 13(7): 2308-2316. |
[9] | 王宇豪, 李志勇, 郭新. 聚合物基电解质在低温固态锂电池中的应用与挑战[J]. 储能科学与技术, 2024, 13(7): 2243-2258. |
[10] | 李臣, 张会林, 张建平. 基于核函数和超参数优化的退役锂电池健康状态估计[J]. 储能科学与技术, 2024, 13(6): 2010-2021. |
[11] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[12] | 陈艺, 秦琪, 赵龙, 陈子坤, 王安宁. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. |
[13] | 甄箫斐, 王贝贝, 张小虎, 孙一铭, 曹文炅, 董缇. 锂电池储能系统热失控气体生成及扩散规律研究[J]. 储能科学与技术, 2024, 13(6): 1986-1994. |
[14] | 刘宝泉, 曹小雨. 锂电池热失控早期典型气体精准检测方法[J]. 储能科学与技术, 2024, 13(6): 1995-2009. |
[15] | 时海欧. 基于深度学习的锂电池故障分析及应用[J]. 储能科学与技术, 2024, 13(6): 2054-2056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||