1 |
SHOAIB M, VALLAYIL P, JAISWAL N, et al. Advances in redox flow batteries-A comprehensive review on inorganic and organic electrolytes and engineering perspectives[J]. Advanced Energy Materials, 2024, 14(32): 2400721. DOI: 10.1002/aenm.202400721.
|
2 |
YI Y P, CHANG L, WU B X, et al. Life cycle assessment of energy storage technologies for new power systems under dual-carbon target: A review[J]. Energy Technology, 2024, 12(5): 2301129. DOI: 10.1002/ente.202301129.
|
3 |
NIU Y C, HEYDARI A, QIU W, et al. Machine learning-enabled performance prediction and optimization for iron-chromium redox flow batteries[J]. Nanoscale, 2024, 16(8): 3994-4003. DOI: 10.1039/d3nr06578b.
|
4 |
LI G D, CHEN W, ZHANG H, et al. Membrane-free Zn/MnO2 flow battery for large-scale energy storage[J]. Advanced Energy Materials, 2020, 10(9): 1902085. DOI: 10.1002/aenm.201902085.
|
5 |
XU Q, WANG S Y, XU C M, et al. Synergistic effect of electrode defect regulation and Bi catalyst deposition on the performance of iron-chromium redox flow battery[J]. Chinese Chemical Letters, 2023, 34(10): 108188. DOI: 10.1016/j.cclet.2023.108188.
|
6 |
ZOU T, LUO L J, LIAO Y W, et al. Study on operating conditions of household vanadium redox flow battery energy storage system[J]. Journal of Energy Storage, 2022, 46: 103859. DOI: 10.1016/j.est.2021.103859.
|
7 |
LI T Y, ZHANG C K, LI X F. Machine learning for flow batteries: Opportunities and challenges[J]. Chemical Science, 2022, 13(17): 4740-4752. DOI: 10.1039/d2sc00291d.
|
8 |
WU M, NAN M J, YE Y J, et al. A highly active electrolyte for high-capacity iron-chromium flow batteries[J]. Applied Energy, 2024, 358: 122534. DOI: 10.1016/j.apenergy.2023.122534.
|
9 |
YE L Z, QI S T, CHENG T K, et al. Vanadium redox flow battery: Review and perspective of 3D electrodes[J]. ACS Nano, 2024, 18(29): 18852-18869. DOI: 10.1021/acsnano.4c06675.
|
10 |
HAN Z, WANG T D, CAI Y C, et al. Electrospun porous carbon nanofiber-based electrodes for redox flow batteries: Progress and opportunities[J]. Carbon, 2024, 222: 118969. DOI: 10.1016/j.carbon.2024.118969.
|
11 |
WANG J H, MU A L, YANG B, et al. Numerical simulation of all-vanadium redox flow battery performance optimization based on flow channel cross-sectional shape design[J]. Journal of Energy Storage, 2024, 93: 112409. DOI: 10.1016/j.est.2024.112409.
|
12 |
WAN S B, JIANG H R, GUO Z X, et al. Machine learning-assisted design of flow fields for redox flow batteries[J]. Energy & Environmental Science, 2022, 15(7): 2874-2888. DOI: 10.1039/D1EE03224K.
|
13 |
PAN L M, SUN J, QI H H, et al. Dead-zone-compensated design as general method of flow field optimization for redox flow batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(37): e2305572120. DOI: 10.1073/pnas.2305572120.
|
14 |
PENG K, ZHANG C, FANG J K, et al. Constructing microporous ion exchange membranes via simple hypercrosslinking for pH-neutral aqueous organic redox flow batteries[J]. Angewandte Chemie International Edition, 2024: e202407372. DOI: 10.1002/anie.202407372.
|
15 |
WANG Z H, WANG L, ZHANG H, et al. Materials descriptors of machine learning to boost development of lithium-ion batteries[J]. Nano Convergence, 2024, 11(1): 8. DOI: 10.1186/s40580-024-00417-6.
|
16 |
吴正浩, 周天航, 蓝兴英, 等. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. DOI: 10.16085/j.issn.1000-6613.2023-0811.
|
|
WU Z H, ZHOU T H, LAN X Y, et al. AI-driven innovative design of chemicals in practice and perspective[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. DOI: 10.16085/j.issn.1000-6613.2023-0811.
|
17 |
TIAN J P, XIONG R, SHEN W X, et al. Deep neural network battery charging curve prediction using 30 points collected in 10 min[J]. Joule, 2021, 5(6): 1521-1534. DOI: 10.1016/j.joule. 2021.05.012.
|
18 |
施思齐, 涂章伟, 邹欣欣, 等. 数据驱动的机器学习在电化学储能材料研究中的应用[J]. 储能科学与技术, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051.
|
|
SHI S Q, TU Z W, ZOU X X, et al. Applying data-driven machine learning to studying electrochemical energy storage materials[J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051.
|
19 |
LIANG Y G, JOB H, FENG R Z, et al. High-throughput solubility determination for data-driven materials design and discovery in redox flow battery research[J]. Cell Reports Physical Science, 2023, 4(10): 101633. DOI: 10.1016/j.xcrp.2023.101633.
|
20 |
NOH J, DOAN H A, JOB H, et al. An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations[J]. Nature Communications, 2024, 15: 2757. DOI: 10.1038/s41467-024-47070-5.
|
21 |
ZHENG Z L, ZHANG O F, BORGS C, et al. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis[J]. Journal of the American Chemical Society, 2023, 145(32): 18048-18062. DOI: 10.1021/jacs.3c05819.
|
22 |
袁誉杭, 高宇辰, 张俊东, 等. 大语言模型在储能研究中的应用[J/OL]. 储能科学与技术, 1-12[2024-06-26]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0176.
|
|
YUAN Y H, GAO Y C, ZHANG J D, et al. The application of large language models in energy storage research[J/OL]. Energy Storage Science and Technology, 1-12[2024-06-26]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0176.
|
23 |
TYSON J L. Shortcomings of ChatGPT [J]. Journal of Chemical Education, 2023, 100(8): 3098-3101.
|
24 |
SUÁREZ A, DÍAZ-FLORES GARCÍA V, ALGAR J, et al. Unveiling the ChatGPT phenomenon: Evaluating the consistency and accuracy of endodontic question answers[J]. International Endodontic Journal, 2024, 57(1): 108-113. DOI: 10.1111/iej. 13985.
|
25 |
ZHOU T H, LIU Z Y, YUAN S W, et al. Machine-learning assisted analysis on coupled fluid-dynamics and electrochemical processes in interdigitated channel for iron-chromium flow batteries[J]. Chemical Engineering Journal, 2024, 496: 153904. DOI: 10.1016/j.cej.2024.153904.
|