储能科学与技术 ›› 2016, Vol. 5 ›› Issue (3): 258-267.doi: 10.3969/j.issn.2095-4239.2016.03.002
邱 珅,吴先勇,卢海燕,艾新平,杨汉西,曹余良
收稿日期:
2016-03-18
修回日期:
2016-03-30
出版日期:
2016-05-01
发布日期:
2016-05-01
通讯作者:
曹余良,教授,研究方向为电化学。E-mail:ylcao@whu.edu.cn。
作者简介:
邱珅(1987—),女,博士研究生,研究方向为钠离子电池负极材料及器件,E-mail:yingtaozi126@126.com
基金资助:
QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang
Received:
2016-03-18
Revised:
2016-03-30
Online:
2016-05-01
Published:
2016-05-01
摘要:
钠离子电池具有资源丰富、成本低廉、环境友好等优势,被认为是最有可能取代锂离子电池成为大规模储能应用的理想电源之一。钠离子电池的性能主要决定于储钠正负极材料,而储钠负极材料是其中一个重要的组成部分。在目前所研究的储钠负极材料中,碳基负极不仅具有较低的嵌钠平台、较高的容量及好的循环稳定性,还具有资源丰富、制备简单等优点,是目前最具应用前景的储钠负极材料。本文综述了石墨、石墨烯、软碳和硬碳等几种碳材料的储钠行为及研究进展,探讨了碳材料储钠性能与微观结构的内在联系,进而阐明了硬碳材料作为最为理想的储钠碳负极材料的应用优势。本文还探讨了目前颇具争议的两种硬碳储钠机理—“嵌入-吸附”和“吸附-嵌入”,并对硬碳材料的发展前景作出了展望。
邱 珅,吴先勇,卢海燕,艾新平,杨汉西,曹余良. 碳基负极材料储钠反应的研究进展[J]. 储能科学与技术, 2016, 5(3): 258-267.
QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang. Research progress of carbon-based sodium-storage anode materials[J]. Energy Storage Science and Technology, 2016, 5(3): 258-267.
[1] HE H N,WANG H Y,TANG Y G,et al. Current studies of anode materials for sodium-ion battery[J]. Progress in Chemistry,2014,26:572-581.
[2] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958.
[3] PALOMARES V,SERRAS P,VILLALUENGA I,et al. Na-ion batteries recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science,2012,5:5884-5901.
[4] ELLIS B L,NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion In Solid State and Materials Science,2012,16:168-177.
[5] QIAN J,ZHOU M,CAO Y,et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Mater.,2012,2:410-414.
[6] YUAN D D,LIANG X M,WU L,et al. A honeycomb-layered Na3Ni2SbO6:A High-rate and cycle-stable cathode for sodium-ion batteries[J].. Advanced Materials,2014,26:6301-6306.
[7] WU X,LUO Y,SUN M,et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J]. Nano Energy,2015,13:117-123.
[8] FANG Y J,XIAO L F,QIAN J F,et al. Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries[J]. Nano Letter,2014,14:3539-3543.
[9] FANG Y,XIAO L,AI X,et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials,2015,27(39):5895-5900.
[10] CAO Y,XIAO L,SUSHKO M L,et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letter,2012,12:3783-3787.
[11] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015.
[12] TANG K,FU L,WHITE R J,YU L,et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials,2012,2:873-877.
[13] XIAO L,CAO Y,XIAO J,WANG W,et al. High capacity reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J]. Chemical Communication,2012,48:3321-3323.
[14] WU L,HU X H,QIAN J F,et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries[J]. Energy & Environmental Science,2014,7:323-328.
[15] LEE J,CHEN Y M,ZHU Y,VOGT B D. Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:21011-21018.
[16] LIU H,CAO K,XU X,et al. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(21):11239-11245..
[17] WU L,LU H Y,XIAO L F,et al. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:16424-16428.
[18] QIAN J F,XIONG Y,CAO Y L,et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity cycle-stable anode of Na-ion batteries[J]. Nano Letter,2014,14:1865-1869.
[19] IIJIMA S. Helical microtubes of graphite carbon[J]. Nature,1991,354:56-58.
[20] TUINSTRA F,KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics,1970,53:1126-1130.
[21] SANDIP N,ELENA B,ITKIS M E,et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721.
[22] RAFIEE M A. Graphene[J]. Dissertations & Theses Gradworks,2011,442:282-286.
[23] WU Y P,JIANG C,WAN C. Modified natural graphite as anode material for lithium ion batteries[J]. Journal of Power Sources,2002,111:329-334.
[24] MCMILLAN R,SLEGR H,SHU Z X,WANG W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources,1999,s 81/82:20-26.
[25] ASHER R C,WILSON S A. Lamellar compound of sodium with graphite[J]. Nature,1958,181:409-410.
[26] GE P,FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28/29/30:1172-1175.
[27] WEN Y,HE K,ZHU Y J,et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communication,2014,5:doi:10.1038/ncomms5033.
[28] JACHE B,ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53:10169-10173.
[29] WANG Y.X,CHOU S L,LIU H K,et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon,2013,57:202-208.
[30] DAVID L,SINGH G. Reduced graphene oxide paper electrode:Opposing effect of thermal annealing on Li and Na cyclability[J]. Journal of Physical Chemistry C,2014,118:28401-28408.
[31] DOEFF M M,MA Y,VISCO S J,et al. Electrochemical insertion of sodium into carbon[J]. Journal of Electrochemical Society,1993,140:L169-L170.
[32] ALCÁNTARA R,MATEOS J M J,TIRADO J L. Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000℃[J]. Journal of Electrochemical Society,2002,149:A201-A205.
[33] LUO W,SHEN F,BOMMIER C,et al. Na-ion battery anodes:Materials and electrochemistry[J]. Accounts of Chemical Research,2016,49(2):231-240.
[34] STEVENS D,DAHN J. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of Electrochemical Society,2000,147:1271-1273.
[35] ALCÁNTARA R,LAVELA P,ORTIZ G F,et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters,2005,8:A222-A225.
[36] WENZEL S,HARA T,JANEK J,et al. Room-temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environmental & Science,2011,4:3342-3345.
[37] CHEN T,LIU Y,PAN L,et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A,2014,2:4117-4121.
[38] LI Y,XU S,WU X,et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Jormal of Materials Chemistry A,2015,3:71-77.
[39] XIAO L,CAO Y,HENDERSON W A,et al. Hard carbon nanoparticles as high-capacity high-stability anodic materials for Na-ion batteries[J]. Nano Energy,2016,19:279-288.
[40] LUO W,SCHARDT J,BOMMIER C,et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A,2013,1:10662-10666.
[41] LOTFABAD E M,DING J,CUI K,et al. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano,2014,8:7115-7129.
[42] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015.
[43] DING J,WANG H,LI Z,et al. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors[J]. Energy Environmental & Science,2015,8:941-955.
[44] JIN J,YU B J,SHI Z Q,et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources,2014,272:800-807.
[45] LI H,SHEN F,LUO W,et al. Carbonized leaf membrane with anisotropic surfaces for sodium ion battery[J]. ACS Applied Materials & Interfaces,2016,8(3):2204-2210.
[46] WU L,BUCHHOLZ D,VAALMA C,et al. Apple biowaste-derived hard carbon as powerful anode material for Na-ion batteries[J]. Chem. Electro. Chem.,2016,27:231-233.
[47] SUN N. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A,2015,3:20560-20566.
[48] LI Y A. Superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,16:4307-4324.
[49] WANG Z,LONG Q,YUAN L,et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon,2013,55:328-334.
[50] LIJUN F,KUN T,KEPENG S,et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale,2014,6:1384-1389.
[51] WANG Z. N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature[J]. RSC Advance,2014,4:62673-62677.
[52] QIE L,CHEN W,XIONG X,et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science,2015,2(12):doi:10.1002/advs.201500195.
[53] LI W. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy Environmental & Science,2015,8(10):2916-2921.
[54] XU D,CHEN C,XIE J,et al. Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials,2016,6(6):doi:10.1002/aenm.201501929.
[55] LI Y,WANG Z,LI L,et al. Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries[J]. Carbon,2015,99:556-563.
[56] KOMABA S,MURATA W,ISHIKAWA T,et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials,2011,21:3859-3867.
[57] ZHANG B,GHIMBEU C M,LABERTY C,et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials,2015,6(1):doi:10.1002/ aenm.201501588.
[58] BOMMIER C,SURTA T W,DOLGOS M,JI X. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letter,2015,15:5888-5892. [1] HE H N,WANG H Y,TANG Y G,et al. Current studies of anode materials for sodium-ion battery[J]. Progress in Chemistry,2014,26:572-581. [2] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958. [3] PALOMARES V,SERRAS P,VILLALUENGA I,et al. Na-ion batteries recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science,2012,5:5884-5901. [4] ELLIS B L,NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion In Solid State and Materials Science,2012,16:168-177. [5] QIAN J,ZHOU M,CAO Y,et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Mater.,2012,2:410-414. [6] YUAN D D,LIANG X M,WU L,et al. A honeycomb-layered Na3Ni2SbO6:A High-rate and cycle-stable cathode for sodium-ion batteries[J].. Advanced Materials,2014,26:6301-6306. [7] WU X,LUO Y,SUN M,et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J]. Nano Energy,2015,13:117-123. [8] FANG Y J,XIAO L F,QIAN J F,et al. Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries[J]. Nano Letter,2014,14:3539-3543. [9] FANG Y,XIAO L,AI X,et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials,2015,27(39):5895-5900. [10] CAO Y,XIAO L,SUSHKO M L,et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letter,2012,12:3783-3787. [11] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015. [12] TANG K,FU L,WHITE R J,YU L,et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials,2012,2:873-877. [13] XIAO L,CAO Y,XIAO J,WANG W,et al. High capacity reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J]. Chemical Communication,2012,48:3321-3323. [14] WU L,HU X H,QIAN J F,et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries[J]. Energy & Environmental Science,2014,7:323-328. [15] LEE J,CHEN Y M,ZHU Y,VOGT B D. Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:21011-21018. [16] LIU H,CAO K,XU X,et al. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(21):11239-11245.. [17] WU L,LU H Y,XIAO L F,et al. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:16424-16428. [18] QIAN J F,XIONG Y,CAO Y L,et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity cycle-stable anode of Na-ion batteries[J]. Nano Letter,2014,14:1865-1869. [19] IIJIMA S. Helical microtubes of graphite carbon[J]. Nature,1991,354:56-58. [20] TUINSTRA F,KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics,1970,53:1126-1130. [21] SANDIP N,ELENA B,ITKIS M E,et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721. [22] RAFIEE M A. Graphene[J]. Dissertations & Theses Gradworks,2011,442:282-286. [23] WU Y P,JIANG C,WAN C. Modified natural graphite as anode material for lithium ion batteries[J]. Journal of Power Sources,2002,111:329-334. [24] MCMILLAN R,SLEGR H,SHU Z X,WANG W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources,1999,s 81/82:20-26. [25] ASHER R C,WILSON S A. Lamellar compound of sodium with graphite[J]. Nature,1958,181:409-410. [26] GE P,FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28/29/30:1172-1175. [27] WEN Y,HE K,ZHU Y J,et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communication,2014,5:doi:10.1038/ncomms5033. [28] JACHE B,ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53:10169-10173. [29] WANG Y.X,CHOU S L,LIU H K,et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon,2013,57:202-208. [30] DAVID L,SINGH G. Reduced graphene oxide paper electrode:Opposing effect of thermal annealing on Li and Na cyclability[J]. Journal of Physical Chemistry C,2014,118:28401-28408. [31] DOEFF M M,MA Y,VISCO S J,et al. Electrochemical insertion of sodium into carbon[J]. Journal of Electrochemical Society,1993,140:L169-L170. [32] ALCÁNTARA R,MATEOS J M J,TIRADO J L. Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below [33] LUO W,SHEN F,BOMMIER C,et al. Na-ion battery anodes:Materials and electrochemistry[J]. Accounts of Chemical Research,2016,49(2):231-240. [34] STEVENS D,DAHN J. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of Electrochemical Society,2000,147:1271-1273. [35] ALCÁNTARA R,LAVELA P,ORTIZ G F,et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters,2005,8:A222-A225. [36] WENZEL S,HARA T,JANEK J,et al. Room-temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environmental & Science,2011,4:3342-3345. [37] CHEN T,LIU Y,PAN L,et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A,2014,2:4117-4121. [38] LI Y,XU S,WU X,et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Jormal of Materials Chemistry A,2015,3:71-77. [39] XIAO L,CAO Y,HENDERSON W A,et al. Hard carbon nanoparticles as high-capacity high-stability anodic materials for Na-ion batteries[J]. Nano Energy,2016,19:279-288. [40] LUO W,SCHARDT J,BOMMIER C,et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A,2013,1:10662-10666. [41] LOTFABAD E M,DING J,CUI K,et al. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano,2014,8:7115-7129. [42] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015. [43] DING J,WANG H,LI Z,et al. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors[J]. Energy Environmental & Science,2015,8:941-955. [44] JIN J,YU B J,SHI Z Q,et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources,2014,272:800-807. [45] LI H,SHEN F,LUO W,et al. Carbonized leaf membrane with anisotropic surfaces for sodium ion battery[J]. ACS Applied Materials & Interfaces,2016,8(3):2204-2210. [46] WU L,BUCHHOLZ D,VAALMA C,et al. Apple biowaste-derived hard carbon as powerful anode material for Na-ion batteries[J]. Chem. Electro. Chem.,2016,27:231-233. [47] SUN N. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A,2015,3:20560-20566. [48] LI Y A. Superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,16:4307-4324. [49] WANG Z,LONG Q,YUAN L,et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon,2013,55:328-334. [50] LIJUN F,KUN T,KEPENG S,et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale,2014,6:1384-1389. [51] WANG Z. N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature[J]. RSC Advance,2014,4:62673-62677. [52] QIE L,CHEN W,XIONG X,et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science,2015,2(12):doi:10.1002/advs.201500195. [53] LI W. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy Environmental & Science,2015,8(10):2916-2921. [54] XU D,CHEN C,XIE J,et al. Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials,2016,6(6):doi:10.1002/aenm.201501929. [55] LI Y,WANG Z,LI L,et al. Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries[J]. Carbon,2015,99:556-563. [56] KOMABA S,MURATA W,ISHIKAWA T,et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials,2011,21:3859-3867. [57] ZHANG B,GHIMBEU C M,LABERTY C,et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials,2015,6(1):doi:10.1002/ aenm.201501588. [58] BOMMIER C,SURTA T W,DOLGOS M,JI X. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letter,2015,15:5888-5892. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[3] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[4] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[5] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[6] | 石鹏, 翟喜民, 杨贺捷, 赵辰孜, 闫崇, 别晓非, 姜涛, 张强. 实用化复合锂负极研究进展[J]. 储能科学与技术, 2022, 11(6): 1725-1738. |
[7] | 肖哲熙, 鲁峰, 林贤清, 张晨曦, 白浩隆, 于春辉, 何姿颖, 姜海容, 魏飞. 气固流化床硅氧碳负极材料的宏量制备[J]. 储能科学与技术, 2022, 11(6): 1739-1748. |
[8] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[9] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[10] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[11] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[12] | 王宇作, 邓苗, 王瑨, 杨斌, 卢颖莉, 荆葛, 阮殿波. 碳化温度对软碳负极储锂动力学的影响[J]. 储能科学与技术, 2022, 11(6): 1715-1724. |
[13] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[14] | 张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400. |
[15] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||