[1] |
FARGHALI M, OSMAN A I, MOHAMED I M A, et al. Strategies to save energy in the context of the energy crisis: A review[J]. Environmental Chemistry Letters, 2023, 21(4): 2003-2039. DOI: 10.1007/s10311-023-01591-5.
|
[2] |
YOUSEF M S, HASSAN H. Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: A comparative study[J]. Solar Energy, 2019, 182: 316-331. DOI: 10.1016/j.solener.2019.02.042.
|
[3] |
SAID M A, HASSAN H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit[J]. Energy Conversion and Management, 2018, 171: 903-916. DOI: 10.1016/j.enconman. 2018.06.051.
|
[4] |
AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054.
|
[5] |
DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): eaas9793. DOI: 10.1126/science.aas9793.
|
[6] |
CABEZA L F, SOLÉ A, BARRENECHE C. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110: 3-39. DOI: 10.1016/j.renene.2016.09.059.
|
[7] |
MA Z W, BAO H S, ROSKILLY A P. Electricity-assisted thermochemical sorption system for seasonal solar energy storage[J]. Energy Conversion and Management, 2020, 209: 112659. DOI: 10.1016/j.enconman.2020.112659.
|
[8] |
JOHANNES K, KUZNIK F, HUBERT J L, et al. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings[J]. Applied Energy, 2015, 159: 80-86. DOI: 10.1016/j.apenergy.2015.08.109.
|
[9] |
GAO S C, WANG S G, HU P Y, et al. Performance of sorption thermal energy storage in zeolite bed reactors: Analytical solution and experiment[J]. Journal of Energy Storage, 2023, 64: 107154. DOI: 10.1016/j.est.2023.107154.
|
[10] |
SCAPINO L, ZONDAG H A, VAN BAEL J, et al. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1314-1331. DOI: 10.1016/j.rser. 2017.03.101.
|
[11] |
HAO C S, FENG G S, MA C J, et al. Performance analysis of a novel multi-module columnar packed bed reactor with salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2024, 86: 111170. DOI: 10.1016/j.est.2024.111170.
|
[12] |
AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334. DOI: 10.1016/j.enconman.2016.05.045.
|
[13] |
MITALI J, DHINAKARAN S, MOHAMAD A A. Energy storage systems: A review[J]. Energy Storage and Saving, 2022, 1(3): 166-216. DOI: 10.1016/j.enss.2022.07.002.
|
[14] |
RANJHA Q, VAHEDI N, OZTEKIN A. High-temperature thermochemical energy storage-heat transfer enhancements within reaction bed[J]. Applied Thermal Engineering, 2019, 163: 114407. DOI: 10.1016/j.applthermaleng.2019.114407.
|
[15] |
SCIACOVELLI A, GAGLIARDI F, VERDA V. Maximization of performance of a PCM latent heat storage system with innovative fins[J]. Applied Energy, 2015, 137: 707-715. DOI: 10.1016/j.apenergy.2014.07.015.
|
[16] |
ZHANG C B, LI J, CHEN Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: 114102. DOI: 10.1016/j.apenergy.2019.114102.
|
[17] |
FOPAH-LELE A, ROHDE C, NEUMANN K, et al. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J]. Energy, 2016, 114: 225-238. DOI: 10.1016/j.energy.2016.08.009.
|
[18] |
WANG W, SHUAI Y, YANG J Y, et al. Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device[J]. Renewable Energy, 2023, 218: 119364. DOI: 10.1016/j.renene.2023.119364.
|
[19] |
LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843. DOI: 10.1016/j.enconman.2019.111843.
|
[20] |
HAN X C, XU H J, XU T, et al. Magnesium-based thermochemical reactor with multiporous structures for medium-temperature solar applications: Transient modelling of discharge capability[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111630. DOI: 10.1016/j.solmat.2022.111630.
|
[21] |
HAN X C, XU H J, ZHAO C Y. Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling[J]. Renewable Energy, 2022, 195: 1324-1340. DOI: 10.1016/j.renene.2022.06.120.
|
[22] |
LUO X Y, LI W, WANG Q W, et al. Numerical investigation of a thermal energy storage system based on the serpentine tube reactor[J]. Journal of Energy Storage, 2022, 56: 106071. DOI: 10.1016/j.est.2022.106071.
|
[23] |
CHEN W, LI W, ZHANG Y S. Analysis of thermal deposition of MgCl2·6H2O hydrated salt in the sieve-plate reactor for heat storage[J]. Applied Thermal Engineering, 2018, 135: 95-108. DOI: 10.1016/j.applthermaleng.2018.02.043.
|
[24] |
孙霄龙, 龚海艇, 陈臻, 等. 钙基热化学储热反应器传热传质协同强化及储热特性研究[J]. 储能科学与技术, 2025, 14(3): 1198-1209. DOI: 10.19799/j.cnki.2095-4239.2025.0048.
|
|
SUN X L, GONG H T, CHEN Z, et al. Synergistic enhancement of heat and mass transfer and heat storage characteristics in calcium-based thermochemical heat storage reactors[J]. Energy Storage Science and Technology, 2025, 14(3): 1198-1209. DOI: 10.19799/j.cnki.2095-4239.2025.0048.
|
[25] |
KANT K, SHUKLA A, SMEULDERS D M J, et al. Performance analysis of a K2CO3-based thermochemical energy storage system using a honeycomb structured heat exchanger[J]. Journal of Energy Storage, 2021, 38: 102563. DOI: 10.1016/j.est.2021. 102563.
|
[26] |
RANJHA Q, OZTEKIN A. Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage[J]. Renewable Energy, 2017, 111: 825-835. DOI: 10.1016/j.renene.2017.04.062.
|
[27] |
RUI J J, LUO Y M, WANG M Q, et al. Design and performance evaluation of an innovative salt hydrates-based reactor for thermochemical energy storage[J]. Journal of Energy Storage, 2022, 55: 105799. DOI: 10.1016/j.est.2022.105799.
|
[28] |
马鸿坤, 纪明希, 丁玉龙. 中低温吸附式热化学储热研究现状与进展[J]. 储能科学与技术, 2024, 13(12): 4436-4451. DOI: 10.19799/j.cnki.2095-4239.2024.0909.
|
|
MA H K, JI M X, DING Y L. Current status and advances in the low-to-medium temperature sorption-based thermochemical heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4436-4451. DOI: 10.19799/j.cnki.2095-4239.2024.0909.
|