储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3330-3339.doi: 10.19799/j.cnki.2095-4239.2025.0106

• 储能材料与器件 • 上一篇    

释能过程沸石填充式热化学反应器热性能参数敏感性分析

李莹1(), 刘淑丽1(), 邹煜良2, 王义函1, 陈廷森1, 沈永亮3   

  1. 1.北京理工大学机械与车辆学院,北京 100081
    2.北京航空航天大学总务部,北京 100191
    3.北京理工大学材料学院,北京 100081
  • 收稿日期:2025-02-06 修回日期:2025-03-08 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 刘淑丽 E-mail:15733578085@163.com;shuli79@126.com
  • 作者简介:李莹(1999—),女,硕士研究生,研究方向为热化学储能,E-mail: 15733578085@163.com
  • 基金资助:
    国家自然科学基金项目(52178063);国家自然科学基金项目(52406066);国家资助博士后研究人员计划项目(GZC20233388)

Sensitivity analysis of thermal performance parameters of zeolite-filled thermochemical reactor during energy release

Ying LI1(), Shuli LIU1(), Yuliang ZOU2, Yihan WANG1, Tingsen CHEN1, Yongliang SHEN3   

  1. 1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    2.General Affairs Department, Beihang University, Beijing 100191, China
    3.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2025-02-06 Revised:2025-03-08 Online:2025-09-28 Published:2025-09-05
  • Contact: Shuli LIU E-mail:15733578085@163.com;shuli79@126.com

摘要:

热能储存技术对于可再生能源的开发和利用至关重要。热化学储能技术与传统储能技术相比,具有稳定、可跨季节储存等优点,可以有效解决太阳能利用中出现的时间和空间上供需不匹配的问题。吸附式热化学储能是目前极具发展前景的热能储存技术。在中低温热化学储能领域,沸石13 X是一种廉价且安全的材料。常规填充式反应床是一种简单可靠的反应器,本研究通过Fluent建立数值模型,对反应器的输出性能进行数值模拟,研究了入口湿空气温度、入口湿空气流量、入口湿空气湿度、沸石初始吸附量等因素对反应器的输出性能的影响,分析了反应器内的传质过程,确定了反应器的输出性能对各参数变化的敏感程度,旨在为热化学反应器的参数设计提供理论指导。研究发现,反应器输出热功率对沸石初始吸附量的变化最为敏感,对入口湿空气流量的变化不太敏感。提高入口湿空气流量可降低反应器的输出温度,而提高入口湿空气温度和降低沸石初始吸附量可显著提升反应器的输出温度,反应器的输出温度最高可达90 ℃。

关键词: 热化学储能, 放热过程, 参数分析

Abstract:

Thermal energy storage technology is crucial for the development and utilization of renewable energy. Compared with traditional energy storage methods, thermochemical energy storage offers advantages such as stability and cross-seasonal storage, effectively addressing the mismatch between energy supply and demand in both time and space for solar energy utilization. Among various thermal energy storage technologies, adsorption-type thermochemical energy storage shows significant potential for development. In the field of medium- and low-temperature thermochemical energy storage, zeolite 13X is an economical and safe material. The conventional packed-bed reactor is a simple and reliable structure. In this study, a numerical model was established using Fluent to simulate the output performance of a zeolite-filled thermochemical reactor. The effects of inlet wet air temperature, inlet wet air flow rate, inlet wet air humidity, and initial zeolite adsorption capacity on reactor performance were investigated. The mass transfer process inside the reactor, variations in zeolite adsorption, and changes in reactor output power were analyzed. The sensitivity of reactor output performance to different parameters was identified, providing theoretical guidance for reactor design. The results indicate that the reactor output thermal power is most sensitive to changes in the initial adsorption capacity of zeolite. When the initial adsorption capacity decreases from 0.19 kg/kg to 0.15 kg/kg, the reactor output power increases by 49%. Conversely, it is least sensitive to variations in the inlet wet air flow rate; increasing the flow rate from 80 kg/h to 160 kg/h results in only a 20% increase in thermal power. Increasing the inlet wet air flow rate reduces the reactor outlet temperature, while increasing the inlet wet air temperature and reducing the initial zeolite adsorption capacity can significantly enhance the outlet temperature, which can reach up to 90 ℃.

Key words: thermochemical energy storage, discharge process, parameter optimization

中图分类号: