储能科学与技术

• XXXX •    

释能过程沸石填充式热化学反应器热性能参数敏感性分析

李莹1, 刘淑丽1, 邹煜良2, 王义函1, 陈廷森1, 沈永亮3   

  1. 1.北京理工大学机械与车辆学院,北京 100081
    2.北京航空航天大学总务部,北京 100081
    3.北京理工大学材料学院,北京 100081
  • 收稿日期:2025-02-06 修回日期:2025-03-08
  • 基金资助:
    项目名称(项目编号),项目名称(项目编号)

Sensitivity analysis of thermal performance parameters of zeolite-filled thermochemical reactor during energy release process

Ying LI1, Shuli LIU1, Yuliang ZOU2, Yihan WANG1, Tingsen CHEN1, Yongliang SHEN3   

  1. 1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
    2.China; General Affairs Department, Beihang University, Beijing 100191, China
    3.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2025-02-06 Revised:2025-03-08

摘要:

热能储存技术对于可再生能源的开发和利用至关重要。热化学储能技术与传统储能技术相比,具有稳定、可跨季节储存等优点,可以有效解决太阳能的利用中出现的时间和空间上供需不匹配的问题,吸附式热化学储能是目前极具发展前景的热能储存技术。在中低温热化学储能领域,沸石13X是一种廉价且安全的材料。常规填充式反应床是一种简单可靠的反应器,本研究通过Fluent建立数值模型,对反应器的输出性能进行数值模拟,研究了入口湿空气温度、入口湿空气流量、入口湿空气湿度、沸石初始吸附量等因素对反应器的输出性能的影响,分析了反应器内的传质过程,确定了反应器的输出性能对各参数变化的敏感程度,旨在为热化学反应器的参数设计提供理论指导。研究发现,反应器输出热功率对沸石的初始吸附量的变化最为敏感,对入口湿空气的流量变化最不敏感。提高入口湿空气的流量可降低反应器输出温度,而提高入口湿空气的温度和降低沸石的初始吸附量可显著提升反应器的输出温度,反应器输出温度最高可达90℃。

关键词: 热化学储能, 放热过程, 参数分析

Abstract:

Thermal energy storage technology is crucial to the development and utilization of renewable energy. Compared with traditional energy storage technology, thermochemical energy storage technology has the advantages of stability and cross-seasonal storage. It can effectively solve the problem of mismatch between supply and demand in time and space in the utilization of solar energy. Adsorption-type thermochemical energy storage is currently a thermal energy storage technology with great development prospects. In the field of medium and low temperature thermochemical energy storage, zeolite 13X is a cheap and safe material. The conventional packed reactor bed is a simple and reliable reactor. This study established a numerical model through Fluent, and numerically simulated the output performance of the reactor. The effects of factors such as inlet wet air temperature, inlet wet air flow rate, inlet wet air humidity, and initial zeolite adsorption on the output performance of the reactor were studied. The mass transfer process in the reactor, the change of zeolite adsorption, and the change of reactor output power were analyzed. The sensitivity of the reactor output performance to the changes in various parameters was determined, aiming to provide theoretical guidance for the parameter design of the reactor bed. The study found that the reactor output thermal power is most sensitive to changes in the initial adsorption capacity of zeolite. When the initial adsorption capacity of zeolite decreases from 0.19kg/kg to 0.15kg/kg, the reactor output power increases by 49%; the output thermal power is least sensitive to changes in the inlet wet air flow rate. When the inlet wet air flow rate increases from 80kg/h to 160kg/h, the thermal power only increases by 20%; increasing the inlet wet air flow rate reduces the reactor output temperature, while increasing the inlet wet air temperature and reducing the initial adsorption capacity of zeolite can significantly increase the reactor output temperature, so that the reactor output temperature can reach 90°C.

Key words: Discharge process, Parameter Optimization, Thermochemical energy storage

中图分类号: