1 |
LUO B, XIAO S, LI Y Y, et al. The improved electrochemical performances of LiMn1- xFexPO4 solid solutions as cathodes for Lithium-ion batteries[J]. Materials Technology, 2017, 32(4): 272-278. DOI: 10.1080/10667857.2016.1214664.
|
2 |
QI M Y, WANG L, HUANG X L, et al. Surface engineering of cathode materials: Enhancing the high performance of lithium-ion batteries[J]. Small, 2024, 20(38): 2402443. DOI: 10.1002/smll. 202402443.
|
3 |
ZHANG C, SUNARSO J, LIU S M. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: Guidelines, recent advances, and forward directions[J]. Chemical Society Reviews, 2017, 46(10): 2941-3005. DOI: 10.1039/C6CS00841K.
|
4 |
李晨威, 徐世国, 余海峰, 等. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. DOI: 10.19799/j.cnki.2095-4239.2023.0942.
|
|
LI C W, XU S G, YU H F, et al. Synthesis of Mg-doped LiMn0.5Fe0.5PO4/C cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. DOI: 10.19799/j.cnki.2095-4239.2023.0942.
|
5 |
唐振强, 蔡宗英, 曹卫刚, 等. 橄榄石型磷酸铁锂正极材料的合成及改性研究进展[J/OL]. 无机盐工业, 1-14[2024-11-19]. https://doi.org/10.19964/j.issn.1006-4990.2024-0281.
|
6 |
HUYNH L T N, LE P P N, TRINH V D, et al. Structure and electrochemical behavior of minor Mn-doped olivine LiMnxFe1- xPO4[J]. Journal of Chemistry, 2019, 2019(1): 5638590. DOI: 10.1155/2019/5638590.
|
7 |
JEONG B J, SUNG J Y, JIANG F, et al. Providing high stability to suppress metal dissolution in LiMn0.5Fe0.5PO4 cathode materials by Zn doping[J]. Journal of Energy Storage, 2024, 96: 112552. DOI: 10.1016/j.est.2024.112552.
|
8 |
HOU H Y, YE M, LAN J, et al. High Li-storage performances of LiMnxFe1- xPO4/C (x = 0, 0.05, 0.1 and 0.2) cathodes derived from spent Li foil, expired manganese gluconate and rust[J]. Journal of Energy Storage, 2024, 78: 110176. DOI: 10.1016/j.est. 2023. 110176.
|
9 |
ZHANG K, LI Z X, LI X, et al. Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries[J]. Rare Metals, 2023, 42(3): 740-750. DOI: 10.1007/s12598-022-02107-w.
|
10 |
TRINH D V, NGUYEN M T T, DANG H T M, et al. Hydrothermally synthesized nanostructured LiMnxFe1- xPO4 (x = 0-0.3) cathode materials with enhanced properties for lithium-ion batteries[J]. Scientific Reports, 2021, 11: 12280. DOI: 10.1038/s41598-021-91881-1.
|
11 |
AHMAD WANI T, SURESH G. A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: Current strategies to improve its performance[J]. Journal of Energy Storage, 2021, 44: 103307. DOI: 10.1016/j.est. 2021. 103307.
|
12 |
ZHANG B, WANG X J, LI H, et al. Electrochemical performances of LiFe1- xMnxPO4 with high Mn content[J]. Journal of Power Sources, 2011, 196(16): 6992-6996. DOI: 10.1016/j.jpowsour. 2010.10.051.
|
13 |
ZHANG B C, XIE X M, PENG Z D, et al. Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes[J]. Journal of Power Sources, 2022, 541: 231671. DOI: 10.1016/j.jpowsour. 2022. 231671.
|
14 |
LIU X C, OUYANG B X, HAO R, et al. Li2SiO3 modification of C/LiFe0.5Mn0.5PO4 for high performance lithium-ion batteries[J]. ChemElectroChem, 2022, 9(16): e202200609. DOI: 10.1002/celc.202200609.
|
15 |
HU Q, LIAO J Y, XIAO X, et al. Ultrahigh rate capability of manganese based olivine cathodes enabled by interfacial electron transport enhancement[J]. Nano Energy, 2022, 104: 107895. DOI: 10.1016/j.nanoen.2022.107895.
|
16 |
RUAN T T, WANG B, WANG F, et al. Stabilizing the structure of LiMn0.5Fe0.5PO4 via the formation of concentration-gradient hollow spheres with Fe-rich surfaces[J]. Nanoscale, 2019, 11(9): 3933-3944. DOI: 10.1039/c8nr10224d.
|
17 |
PARK K, KIM J, WI S, et al. Optimum morphology of mixed-olivine mesocrystals for a Li-ion battery[J]. Inorganic Chemistry, 2018, 57(10): 5999-6009. DOI: 10.1021/acs.inorgchem.8b00501.
|
18 |
HU H, LI H, LEI Y, et al. Mg-doped LiMn0.8Fe0.2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 73: 109006. DOI: 10.1016/j.est.2023.109006.
|
19 |
ZHANG K C, CAO J R, TIAN S Y, et al. The prepared and electrochemical property of Mg-doped LiMn0.6Fe0.4PO4/C as cathode materials for lithium-ion batteries[J]. Ionics, 2021, 27(11): 4629-4637. DOI: 10.1007/s11581-021-04183-x.
|
20 |
LIU S J, ZHENG J G, ZHANG B, et al. Engineering manganese-rich phospho-olivine cathode materials with exposed crystal{010}facets for practical Li-ion batteries[J]. Chemical Engineering Journal, 2023, 454: 139986. DOI: 10.1016/j.cej.2022.139986.
|
21 |
XIE X M, ZHANG B C, HU G R, et al. A new route for green synthesis of LiFe0.25Mn0.75PO4/C@rGO material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2021, 853: 157106. DOI: 10.1016/j.jallcom.2020.157106.
|
22 |
WANG Y Z, HU G R, CAO Y B, et al. Highly atom-economical and environmentally friendly synthesis of LiMn0.8Fe0.2PO4/rGO/C cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2020, 354: 136743. DOI: 10.1016/j.electacta.2020.136743.
|
23 |
CHEN L, YAN B, WANG H Y, et al. Synthesis and characterization of 0.95LiMn0.95Fe0.05PO4·0.05Li3V2(PO4)3 nanocomposite by sol-gel method[J]. Journal of Power Sources, 2015, 287: 316-322. DOI: 10.1016/j.jpowsour.2015.04.075.
|
24 |
OH S M, MYUNG S T, PARK J B, et al. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2012, 51(8): 1853-1856. DOI: 10.1002/anie.201107394.
|
25 |
LIU J L, WU Y Q, ZHANG B, et al. A promising solid-state synthesis of LiMn1- yFeyPO4 cathode for lithium-ion batteries[J]. Small, 2024, 20(14): 2309629. DOI: 10.1002/smll.202309629.
|
26 |
WEN F, LV T A, GAO P, et al. Graphene-embedded LiMn0.8Fe0.2PO4 composites with promoted electrochemical performance for lithium ion batteries[J]. Electrochimica Acta, 2018, 276: 134-141. DOI: 10.1016/j.electacta.2018.04.157.
|
27 |
于松民, 金洪波, 杨明虎, 等. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2024, 43(1): 302-309. DOI: 10. 16085/j.issn.1000-6613.2023-1224.
|
|
YU S M, JIN H B, YANG M H, et al. Synthesis and modification of F-doped olivine LiMn0.5Fe0.5PO4 cathode materials for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 302-309. DOI: 10.16085/j.issn.1000-6613.2023-1224.
|
28 |
XU X Y, WANG T, BI Y J, et al. Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment[J]. Journal of Power Sources, 2017, 341: 175-182. DOI: 10.1016/j.jpowsour.2016.12.001.
|
29 |
YANG L T, XIA Y G, QIN L F, et al. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery[J]. Journal of Power Sources, 2016, 304: 293-300. DOI: 10.1016/j.jpowsour.2015.11.037.
|
30 |
LIU X Z, ZHANG Y, MENG Y S, et al. Influence mechanism of Mg2+ doping on electrochemical properties of LiFePO4 cathode materials[J]. ACS Applied Energy Materials, 2022, 5(7): 8452-8459. DOI: 10.1021/acsaem.2c00986.
|
31 |
CHEN Z W, WANG W G, DUAN J G, et al. Highly efficient synthesis of nano LiMn0.90Fe0.10PO4/C composite via mechanochemical activation assisted calcination[J]. Ceramics International, 2023, 49(11): 18483-18490. DOI: 10.1016/j.ceramint.2023.02.221.
|
32 |
ZOU B K, WANG H Y, QIANG Z Y, et al. Mixed-carbon-coated LiMn0.4Fe0.6PO4 nanopowders with excellent high rate and low temperature performances for lithium-ion batteries[J]. Electrochimica Acta, 2016, 196: 377-385. DOI: 10.1016/j.electacta. 2016.03.017.
|
33 |
YU M, LI J, NING X H. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon[J]. Electrochimica Acta, 2021, 368: 137597. DOI: 10.1016/j.electacta.2020.137597.
|
34 |
PENG Z D, ZHANG B C, HU G R, et al. Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery[J]. Electrochimica Acta, 2021, 387: 138456. DOI: 10.1016/j.electacta.2021.138456.
|