[1] |
沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1): 309-316. DOI: 10.11949/j.issn.0438-1157.20171097.
|
|
SHEN J N, HE Y J, MA Z F. Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69(1): 309-316. DOI: 10.11949/j.issn.0438-1157. 20171097.
|
[2] |
宋磊, 陆春光, 刘琳, 等. 基于修正安时积分法的磷酸铁锂电池荷电状态估计[J]. 郑州大学学报(工学版), 2023, 44(6): 84-90. DOI: 10. 13705/j.issn.1671-6833.2023.06.003.
|
|
SONG L, LU C G, LIU L, et al. State of charge estimation of LiFePO4 battery based on modified amper-hour integral method[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 84-90. DOI: 10.13705/j.issn.1671-6833.2023.06.003.
|
[3] |
王少华. 电动汽车动力锂电池模型参数辨识和状态估计方法研究[D]. 长春: 吉林大学, 2021. DOI: 10.27162/d.cnki.gjlin.2021. 007576.
|
|
WANG S H. Research on model parameter identification and state estimation method of power lithium battery for electric vehicle[D]. Changchun: Jilin University, 2021. DOI: 10.27162/d.cnki.gjlin.2021.007576.
|
[4] |
田从丰, 汪文浦, 张风奇, 等. 电动车辆动力电池SOC估计方法研究进展及展望[J]. 中国公路学报, 2025, 38(5): 224-247. DOI: 10.19721/j.cnki.1001-7372.2025.05.019.
|
|
TIAN C F, WANG W P, ZHANG F Q, et al. Research progress and prospects of state of charge estimation methods for electric vehicle power batteries[J]. China Journal of Highway and Transport, 2025, 38(5): 224-247. DOI: 10.19721/j.cnki.1001-7372.2025.05.019.
|
[5] |
凌六一, 吴贤圆, 王星凯, 等. 基于FFRLS-AUKF的锂电池参数在线辨识及SOC估计[J]. 安徽理工大学学报(自然科学版), 2023, 43(1): 1-7.
|
|
LING L Y, WU X Y, WANG X K, et al. Online parameter identification and SOC estimation of lithium battery based on FFRLS-AUKF[J]. Journal of Anhui University of Science and Technology (Natural Science), 2023, 43(1): 1-7.
|
[6] |
LIANG Y W, WANG S L, FAN Y C, et al. An error covariance correction-adaptive extended Kalman filter based on piecewise forgetting factor recursive least squares method for the state-of-charge estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107629. DOI: 10.1016/j.est.2023.107629.
|
[7] |
PENG J K, LUO J Y, HE H W, et al. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries[J]. Applied Energy, 2019, 253: 113520. DOI: 10.1016/j.apenergy.2019.113520.
|
[8] |
RESHMA P, MANOHAR V J. Collaborative evaluation of SoC, SoP and SoH of lithium-ion battery in an electric bus through improved remora optimization algorithm and dual adaptive Kalman filtering algorithm[J]. Journal of Energy Storage, 2023, 68: 107573. DOI: 10.1016/j.est.2023.107573.
|
[9] |
SUN C, LIU S L, SUN B. Joint estimation of SOC and SOH of lithium battery based on multi-time scale EKF-ASRCKF algorithm[J]. Journal of Physics: Conference Series, 2023, 2477(1): 012015. DOI: 10.1088/1742-6596/2477/1/012015.
|
[10] |
LI Z X, SHEN S Y, ZHOU Z, et al. Novel method for modelling and adaptive estimation for SOC and SOH of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 62: 106927. DOI: 10.1016/j.est.2023.106927.
|
[11] |
XIA B Z, LAO Z Z, ZHANG R F, et al. Online parameter identification and state of charge estimation of lithium-ion batteries based on forgetting factor recursive least squares and nonlinear Kalman filter[J]. Energies, 2018, 11(1): 3. DOI: 10.3390/en11010003.
|
[12] |
XIAO W J, WANG S L, YU C M, et al. Online parameter identification and state of charge estimation of lithium-ion batteries based on improved artificial fish swarms forgetting factor least squares and differential evolution extended Kalman filter[J]. Journal of the Electrochemical Society, 2022, 169(12): 120534. DOI: 10.1149/1945-7111/acaa5b.
|
[13] |
徐伟杰. 基于模型法的锂电池SOC估计及均衡控制研究[D]. 秦皇岛: 燕山大学, 2023. DOI: 10.27440/d.cnki.gysdu.2023.000237.
|
[14] |
李堂, 黄康, 毛行奎, 等. 基于EKF算法的动力锂离子电池SOC估计[J]. 电器与能效管理技术, 2023(9): 62-68, 75. DOI: 10.16628/j.cnki.2095-8188.2023.09.010.
|
|
LI T, HUANG K, MAO X K, et al. SOC estimation of power lithium-ion battery based on EKF algorithm[J]. Electrical & Energy Management Technology, 2023(9): 62-68, 75. DOI: 10.16628/j.cnki.2095-8188.2023.09.010.
|
[15] |
张远进, 吴华伟, 叶从进. 基于AUKF-BP神经网络的锂电池SOC估算[J]. 储能科学与技术, 2021, 10(1): 237-241. DOI: 10.19799/j.cnki.2095-4239.2020.0285.
|
|
ZHANG Y J, WU H W, YE C J. Estimation of the SOC of a battery based on the AUKF-BP algorithm[J]. Energy Storage Science and Technology, 2021, 10(1): 237-241. DOI: 10.19799/j.cnki. 2095-4239.2020.0285.
|
[16] |
王建锋, 张照震, 李平. 基于加权自适应递推最小二乘法与EKF的锂离子电池SOC估计[J]. 汽车技术, 2021(10): 16-22. DOI: 10.19620/j.cnki.1000-3703.20200990.
|
|
WANG J F, ZHANG Z Z, LI P. State of charge estimation for lithium-ion battery based on adaptive recursive weighted least squares and extended Kalman filter algorithm[J]. Automobile Technology, 2021(10): 16-22. DOI: 10.19620/j.cnki.1000-3703.20200990.
|
[17] |
SUN X D, JI J R, REN B Y, et al. Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery[J]. Energies, 2019, 12(12): 2242. DOI: 10.3390/en12122242.
|
[18] |
夏小虎, 刘明. 基于交互式多模型卡尔曼滤波的电池荷电状态估计[J]. 信息与控制, 2017, 46(5): 519-524. DOI: 10.13976/j.cnki.xk. 2017.0519.
|
|
XIA X H, LIU M. Battery state-of-charge estimation using interactive multiple-model Kalman filter[J]. Information and Control, 2017, 46(5): 519-524. DOI: 10.13976/j.cnki.xk.2017. 0519.
|
[19] |
谭霁宬, 颜学龙. 基于交互式多模型无迹卡尔曼滤波的锂电池荷电状态估计[J]. 科学技术与工程, 2019, 19(12): 170-175.
|
|
TAN J C, YAN X L. Estimation of state-of-charge for lithium-ion battery by interactive multiple model unscented Kalman filter[J]. Science Technology and Engineering, 2019, 19(12): 170-175.
|
[20] |
李锦满, 李儒欢, 李浩南, 等. 基于无迹卡尔曼滤波的动力电池状态估计[J]. 电池, 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579. 2024.03.010.
|
|
LI J M, LI R H, LI H N, et al. State estimation for power battery based on unscented Kalman filter[J]. Dianchi(Battery Bimonthly), 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010.
|
[21] |
吴华伟, 洪强, 陈运星, 等. 基于CSO-AUKF的锂电池SOC估算方法[J]. 重庆交通大学学报(自然科学版), 2024, 43(9): 118-126.
|
|
WU H W, HONG Q, CHEN Y X, et al. Lithium battery SOC estimation method based on CSO-AUKF[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(9): 118-126.
|
[22] |
高铭琨, 徐海亮, 吴明铂. 基于等效电路模型的动力电池SOC估计方法综述[J]. 电气工程学报, 2021, 16(1): 90-102.
|
|
GAO M K, XU H L, WU M B. Review of SOC estimation methods for power battery based on equivalent circuit model[J]. Journal of Electrical Engineering, 2021, 16(1): 90-102.
|
[23] |
CHOPRA N, MOHSIN ANSARI M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198: 116924. DOI: 10. 1016/j.eswa.2022.116924.
|
[24] |
黄锐. 基于可变遗忘因子递推最小二乘法的三元锂电池荷电状态估计[D]. 重庆: 重庆大学, 2022. DOI: 10.27670/d.cnki.gcqdu.2022. 002239.
|
[25] |
赵可沦, 江境宏, 邓进, 等. 基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法[J]. 电子测量技术, 2022, 45(16): 87-92. DOI: 10.19651/j.cnki.emt.2209936.
|
|
ZHAO K L, JIANG J H, DENG J, et al. Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least squares[J]. Electronic Measurement Technology, 2022, 45(16): 87-92. DOI: 10.19651/j.cnki.emt.2209936.
|
[26] |
张武, 孙士山, 张家福. 基于自适应无迹卡尔曼滤波的动力电池SOC估计[J]. 电源技术, 2021, 45(1): 14-17. DOI: 10.3969/j.issn.1002-087X.2021.01.004.
|
|
ZHANG W, SUN S S, ZHANG J F. SOC estimation of power batteries based on adaptive unscented Kalman filter[J]. Chinese Journal of Power Sources, 2021, 45(1): 14-17. DOI: 10.3969/j.issn.1002-087X.2021.01.004.
|