储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3402-3413.doi: 10.19799/j.cnki.2095-4239.2025.0071

• 储能系统与工程 • 上一篇    

不同荷电状态下电池模组热失控传播对比试验

陈晔1,2,3(), 李晋1,2,3, 赵瑞兰4, 张少禹1,2,3, 储玉喜1,2,3, 杨康4, 廖晓雪4, 蒋波4, 卓萍1,2,3()   

  1. 1.应急管理部天津消防研究所
    2.工业与公共建筑火灾防控技术应急管理部重点实验室
    3.天津市消防安全技术重点实验室,天津 300381
    4.深圳市比亚迪锂电池有限公司,广东 深圳 518100
  • 收稿日期:2025-01-22 修回日期:2025-02-12 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 卓萍 E-mail:chenye@tfri.com.cn;zhuoping@tfri.com.cn
  • 作者简介:陈晔(1988—),男,博士,副研究员,研究方向为锂离子电池、氢能火灾安全,E-mail:chenye@tfri.com.cn
  • 基金资助:
    国际锂离子电池储能安全评价关键技术合作研发项目(2022YFE0207400);新能源电动汽车绿色高效灭火系统研发项目(2024EMST111107)

Comparative experimental study on thermal runaway propagation of battery modules under different states of charge

Ye CHEN1,2,3(), Jin LI1,2,3, Ruilani ZHAO4, Shaoyu ZHANG1,2,3, Yuxi CHU1,2,3, Kang YANG4, Xiaoxue LIAO4, Bo JIANG4, Ping ZHUO1,2,3()   

  1. 1.Tianjin Fire Research Institute of Emergency Management Department
    2.Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management
    3.Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
    4.BYD Lithium Battery Co. , Ltd. , Shenzhen 518100, Guangdong, China
  • Received:2025-01-22 Revised:2025-02-12 Online:2025-09-28 Published:2025-09-05
  • Contact: Ping ZHUO E-mail:chenye@tfri.com.cn;zhuoping@tfri.com.cn

摘要:

电芯热失控引发模组内的热失控传播是造成电池系统严重事故的重要原因。为了探究真实电池模组的热失控传播行为及其集装箱运输风险,本文以1P31S电池模组为研究对象,开展了包装箱运输场景下的热失控传播实尺度试验,并基于试验结果重点研究了荷电状态对热失控传播过程的影响。结果表明,同时加热触发两颗电芯失效不会引发30%荷电状态(SOC)模组内的热失控传播,但会造成100%SOC模组(主/备热触发的4颗电芯满电,其余电芯30%SOC)内9~10颗电芯热失控,热失控传播速度为0.0315~0.0606 mm/s,并导致包装珍珠棉和模组塑料顶盖被熔毁;随着荷电状态的增加,模组内电芯和包装箱最高温度、电芯间热失控传播速度和传递热量均有所增加;100%SOC模组内热触发电芯和邻近电芯测得的最高温度分别为495.2 ℃和649.5 ℃,明显高于30%SOC模组的237.2 ℃和131.9 ℃,且100%SOC热失控传播产生的大量热量导致包装箱顶部中心最高温度达57.1 ℃,几乎是30%SOC模组的2倍;当来自上一级的热传导热量不大于117.1kJ时,不会诱发30%SOC电芯失效,当接收到的热量大于140.8kJ时会导致其热失控,而100%SOC电芯间形成热失控传播所需的热量仅为61.2 kJ。该研究可为电池模组设计及电池模组集装箱运输安全提供参考。

关键词: 电池模组, 热失控传播, 荷电状态, 温度, 热量传递

Abstract:

Thermal runaway propagation (TRP) within a battery module, triggered by the thermal runaway of individual cells, is a significant cause of severe accidents in battery systems. To investigate the TRP behavior of real battery modules and their associated transportation risks in containers, this study focuses on 1P31S battery modules and conducts full-scale experiments simulating packaging transportation scenarios. The effect of the state of charge (SOC) on the TRP process is emphasized. The results indicate that simultaneously triggering two cells through heating does not initiate TRP in modules with 30% SOC but can cause thermal runaway in 9—10 cells in modules with 100% SOC (where four triggered cells are fully charged, and the remaining cells are at 30% SOC). The TRP speed ranges from 0.0315 to 0.0606 mm/s and leads to the melting of the packaging expanded polyethylene (EPE) foam and the plastic top cover of the module. As SOC increases, the maximum temperatures of the cells and packaging box, TRP speed, and heat transfer all increase. The maximum temperatures measured in the triggered cells and adjacent cells in the 100% SOC module were 495.2 ℃ and 649.5 ℃, respectively, significantly higher than 237.2 ℃ and 131.9 ℃ in the 30% SOC module. Furthermore, the substantial heat generated by TRP in the 100% SOC module caused the maximum temperature at the top center of the packaging box to reach 57.1 ℃, nearly double that of the 30% SOC module. Cells at 30% SOC did not fail when the heat received from the previous cell through thermal conduction was no more than 117.1 kJ but experienced thermal runaway when the received heat exceeded 140.8 kJ. In contrast, only 61.2 kJ of heat was required to trigger TRP among cells at 100% SOC. This study provides a reference for battery module design and the safety of battery module transportation in containers.

Key words: battery module, thermal runaway propagation, state of charge, temperature, heat transfer

中图分类号: