[1] |
HUANG Z H, LIU J L, ZHAI H J, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions[J]. Energy, 2021, 233: 121103. DOI: 10. 1016/j.energy.2021.121103.
|
[2] |
徐亮. 三元锂离子电池直径和荷电状态对热失控传播影响研究[J]. 消防科学与技术, 2022, 41(7): 899-904.
|
|
XU L. Study on the influence of ternary lithium-ion battery diameter and state of charge on thermal runaway propagation[J]. Fire Science and Technology, 2022, 41(7): 899-904.
|
[3] |
ZHU M H, ZHANG S Y, CHEN Y, et al. Experimental and analytical investigation on the thermal runaway propagation characteristics of lithium-ion battery module with NCM pouch cells under various state of charge and spacing[J]. Journal of Energy Storage, 2023, 72: 108380. DOI: 10.1016/j.est.2023. 108380.
|
[4] |
宋来丰, 田佳敏, 刘勇, 等. 磷酸铁锂电池热失控传播特性的影响因素研究[J]. 消防科学与技术, 2024, 43(5): 641-650. DOI: 10.20168/j.1009-0029.2024.05.641.10.
|
|
SONG L F, TIAN J M, LIU Y, et al. An investigation of the influencing factors on the thermal runaway propagation characteristics of lithium iron phosphate batteries[J]. Fire Science and Technology, 2024, 43(5): 641-650. DOI: 10.20168/j.1009-0029.2024.05.641.10.
|
[5] |
ZHAO L Y, HAN Z X, GUO W, et al. An experimental study on thermal runaway propagation over cyclic aging lithium-ion battery modules with different electrical connections[J]. Journal of Energy Storage, 2024, 89: 111823. DOI: 10.1016/j.est.2024.111823.
|
[6] |
黄宗候. 锂离子电池热失控传播机制及基于液氮的阻隔抑制研究[D]. 合肥: 中国科学技术大学, 2023.
|
|
HUANG Z H. Study on thermal runaway propagation mechanism of lithium ion battery and prevention technology based on liquid nitrogen[D]. Heifei: University of Science and Technology of China, 2023.
|
[7] |
SONG L F, HUANG Z H, MEI W X, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. DOI: 10.1016/j.psep.2022. 12.082.
|
[8] |
王庭华, 翟宏举, 秦鹏, 等. 模组箱体空间内磷酸铁锂电池热失控及其传播行为研究[J]. 火灾科学, 2022, 31(1): 25-34.
|
|
WANG T H, ZHAI H J, QIN P, et al. Study on the thermal runaway and its propagation behaviors of lithium iron phosphate battery in module box space[J]. Fire Safety Science, 2022, 31(1): 25-34.
|
[9] |
LIU P J, SUN H L, QIAO Y T, et al. Experimental study on the thermal runaway and fire behavior of LiNi0.8Co0.1Mn0.1O2 battery in open and confined spaces[J]. Process Safety and Environmental Protection, 2022, 158: 711-726. DOI: 10.1016/j.psep.2021.12.056.
|
[10] |
XU L J, WANG S L, LI Y T, et al. Thermal runaway propagation behavior and gas production characteristics of NCM622 battery modules at different state of charge[J]. Process Safety and Environmental Protection, 2024, 185: 267-276. DOI: 10.1016/j.psep.2024.03.011.
|
[11] |
PENG R Q, KONG D P, PING P, et al. Experimental investigation of the influence of venting gases on thermal runaway propagation in lithium-ion batteries with enclosed packaging[J]. eTransportation, 2025, 23: 100388. DOI: 10.1016/j.etran.2024.100388.
|
[12] |
陈晔, 李晋, 吴候福, 等. 大容量储能电池模组热失控传播行为与燃爆风险分析[J]. 储能科学与技术, 2024, 13(8): 2803-2812. DOI: 10. 19799/j.cnki.2095-4239.2024.0216.
|
|
CHEN Y, LI J, WU H F, et al. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage[J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. DOI: 10.19799/j.cnki.2095-4239.2024. 0216.
|
[13] |
CHEN Y, LI J, WU H F, et al. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage[J]. Energy Storage Science and Technology, 2024, 13(8). DOI: 10.19799/j.cnki.2095-4239.2024.0216.
|