储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3389-3401.doi: 10.19799/j.cnki.2095-4239.2025.0167
• 储能材料与器件 • 上一篇
钱艺华1(), 赵耀洪1(
), 王青1, 郭鹏2, 裴大婷2, 曾以柔2(
)
收稿日期:
2025-02-26
修回日期:
2025-03-06
出版日期:
2025-09-28
发布日期:
2025-09-05
通讯作者:
赵耀洪,曾以柔
E-mail:qianyh2001@163.com;zhaoyaohong@naesic.com;zrr7992@163.com
作者简介:
钱艺华(1975—),女,硕士,正高级工程师,研究方向为新型电力系统及电化学储能,E-mail:qianyh2001@163.com;
基金资助:
Yihua QIAN1(), Yaohong ZHAO1(
), Qing WANG1, Peng GUO2, Dating PEI2, Yirou ZENG2(
)
Received:
2025-02-26
Revised:
2025-03-06
Online:
2025-09-28
Published:
2025-09-05
Contact:
Yaohong ZHAO, Yirou ZENG
E-mail:qianyh2001@163.com;zhaoyaohong@naesic.com;zrr7992@163.com
摘要:
开发综合性能优异的新型固态电解质是实现高安全、高比能全固态电池的关键。在诸多电解质材料体系中,卤化物电解质因具有离子电导率高、氧化电位高、柔韧性好、与正极相容性好等优势,受到学术界与产业界的广泛关注。目前,锂离子卤化物研究已相对较多,而钠离子卤化物电解质研发尚处于起步阶段,存在诸多不足。不同类型的钠卤化物在晶体结构、离子输运机制及电化学稳定性方面存在显著差异,对其结构-性能关系的系统总结有助于指导高性能电解质的开发。本文综述了钠卤化物固态电解质的最新研究进展,重点解析了不同晶体结构对钠离子输运机制的影响,探讨了缺陷工程、无序化及双阴离子结构等调控策略对离子电导率的提升作用,同时总结了不同合成方法对材料微观结构的影响。此外,本文系统评估了钠卤化物电解质在全固态电池中的界面稳定性、电化学稳定窗口及循环性能。最后,本文进一步展望其未来发展方向,包括新型材料设计、界面改性优化及高性能全固态电池构筑等,以期推动钠离子卤化物电解质及储能技术的发展。
中图分类号:
钱艺华, 赵耀洪, 王青, 郭鹏, 裴大婷, 曾以柔. 钠离子卤化物固态电解质研究进展与展望[J]. 储能科学与技术, 2025, 14(9): 3389-3401.
Yihua QIAN, Yaohong ZHAO, Qing WANG, Peng GUO, Dating PEI, Yirou ZENG. Research progress and prospect of sodium halide solid-state electrolytes[J]. Energy Storage Science and Technology, 2025, 14(9): 3389-3401.
表1
部分基于钠卤化物电解质的电池性能"
正极电解质 | 正极 | 隔层电解质 | 负极 | 初始库仑效率/% | 比容量/mAh/g | 容量保持率/% | Ref. |
---|---|---|---|---|---|---|---|
Na2ZrCl6 | NaCrO2 | Na3PS4 | Na-Sn | 93.1 | 111(0.1C, 30 ℃) | — | [ |
Na0.7La0.7Zr0.3Cl4 | NaCrO2 | Na3PS4 | Na2Sn | 95.0 | 94(1C) | 88 (0.3C, 70圈) | [ |
Na2.25Y0.25Zr0.75Cl6 | NaCrO2 | Na3PS4 | Na-Sn | 97.1 | — | 89.3 (40 ℃, 1000圈) | [ |
NaAlCl4 | NaCrO2 | Na3PS4 | Na3Sn | 94.0 | 112 (60 ℃, 1C) | 82 (60 ℃, 1C, 500圈) | [ |
NaAlCl4 | NaNCM118 | Na3PS3.85O0.15 | Na3Sn | — | 124(0.1C, 25 ℃) | — | [ |
NaTaCl6 | Na3V2(PO4)3 | Na3PS4 | Na15Sn4 | 99.6 | 111(0.1C) | 95 (1C, 600圈) | [ |
0.5Na2O2-TaCl5 | Na0.85Mn0.5Ni0.4Fe0.1O2 | Na3PS4 | Na15Sn4 | — | 106.3(0.1C) | 66 (0.1C, 500圈) | [ |
Na2O2-HfCl4 | Na0.85Mn0.5Ni0.4Fe0.1O2 | Na3PS4 | Na15Sn4 | 99.9 | 125.5(0.1C) | 78 (0.1C, 700圈) | [ |
[1] | ZHAO C, LIU L, QI X, et al. Solid-State Sodium Batteries [J]. Advanced Energy Materials, 2018, 8(17): 1703012. |
[2] | JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8(3): 230-240. DOI: 10.1038/s41560-023-01208-9. |
[3] | LEWIS J A, TIPPENS J, CORTES F J Q, et al. Chemo-mechanical challenges in solid-state batteries[J]. Trends in Chemistry, 2019, 1(9): 845-857. DOI: 10.1016/j.trechm.2019.06.013. |
[4] | ZOU S H, YANG Y, WANG J R, et al. In situ polymerization of solid-state polymer electrolytes for lithium metal batteries: A review[J]. Energy & Environmental Science, 2024, 17(13): 4426-4460. DOI: 10.1039/D4EE00822G. |
[5] | TUO K Y, SUN C W, LIU S Q. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 17. DOI: 10.1007/s41918-023-00179-5. |
[6] | NIKODIMOS Y, SU W N, HWANG B J. Halide solid-state electrolytes: Stability and application for high voltage all-solid-state Li batteries[J]. Advanced Energy Materials, 2023, 13(3): 2202854. DOI: 10.1002/aenm.202202854. |
[7] | HATZELL K B. Opportunities for halide solid electrolytes in solid-state batteries[J]. Matter, 2022, 5(8): 2533-2535. DOI: 10.1016/j.matt.2022.06.055. |
[8] | GINNINGS D C, PHIPPS T E. Temperature-conductance curves of solid salts. iii. halides of lithium[J]. Journal of the American Chemical Society, 1930, 52(4): 1340-1345. DOI: 10.1021/ja01367a006. |
[9] | ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075. DOI: 10.1002/adma.201803075. |
[10] | SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6(M=Y, Er) superionic conductors[J]. Advanced Energy Materials, 2020, 10(6): 1903719. DOI: 10.1002/aenm.2019 03719. |
[11] | HELM B, SCHLEM R, WANKMILLER B, et al. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3- xIn1- xZrxCl6(0≤x≤0.5)[J]. Chemistry of Materials, 2021, 33(12): 4773-4782. DOI: 10.1021/acs.chemmater.1c01348. |
[12] | SHI X M, ZENG Z C, ZHANG H T, et al. Gram-scale synthesis of nanosized Li3HoBr6 solid electrolyte for all-solid-state Li-Se battery[J]. Small Methods, 2021, 5(11): 2101002. DOI: 10.1002/smtd.202101002. |
[13] | LI X N, LIANG J W, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie International Edition, 2019, 58(46): 16427-16432. DOI: 10.1002/anie.201909805. |
[14] | DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. DOI: 10.1002/aenm.201703137. |
[15] | BENIERE M, CHEMLA M, BENIERE F. Vacancy pairs and correlation effects in kCl and NaCl single crystals[J]. Journal of Physics and Chemistry of Solids, 1976, 37(5): 525-538. DOI: 10.1016/0022-3697(76)90080-9. |
[16] | D. J M Y V I P I I-C U-I. Determination of conduction parameters of sodium halides [J]. |
[17] | BÉNIÈRE F, REDDY K V. Enhanced ionic transport in NaCl-Al2O3 heterogeneous electrolytes[J]. Journal of Physics and Chemistry of Solids, 1999, 60(6): 839-847. DOI: 10.1016/S0022-3697(98)00331-X. |
[18] | WU E A, BANERJEE S, TANG H M, et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries[J]. Nature Communications, 2021, 12: 1256. DOI: 10.1038/s41467-021-21488-7. |
[19] | SEBTI E, QI J, RICHARDSON P M, et al. Synthetic control of structure and conduction properties in Na-Y-Zr-Cl solid electrolytes[J]. Journal of Materials Chemistry A, 2022, 10(40): 21565-21578. DOI: 10.1039/D2TA05823E. |
[20] | SCHLEM R, BANIK A, ECKARDT M, et al. Na3- xEr1- xZrxCl6—a halide-based fast sodium-ion conductor with vacancy-driven ionic transport[J]. ACS Applied Energy Materials, 2020, 3(10): 10164-10173. DOI: 10.1021/acsaem.0c01870. |
[21] | ZHAO T, SOBOLEV A N, SCHLEM R, et al. Synthesis-controlled cation solubility in solid sodium ion conductors Na2+ xZr1- xInxCl6[J]. Acs Applied Energy Materials, 2023, 6(8): 4334-4341. DOI: 10. 1021/acsaem.3c00277. |
[22] | FU C Y, LI Y F, XU W J, et al. LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries[J]. Nature Communications, 2024, 15: 4315. DOI: 10.1038/s41 467-024-48712-4. |
[23] | RIDLEY P, NGUYEN L H B, SEBTI E, et al. Amorphous and nanocrystalline halide solid electrolytes with enhanced sodium-ion conductivity[J]. Matter, 2024, 7(2): 485-499. DOI: 10.1016/j.matt.2023.12.028. |
[24] | HU Y, FU J M, XU J B, et al. Superionic amorphous NaTaCl6 halide electrolyte for highly reversible all-solid-state Na-ion batteries[J]. Matter, 2024, 7(3): 1018-1034. DOI: 10.1016/j.matt. 2023.12.017. |
[25] | FU J M, WANG S, WU D J, et al. Halide heterogeneous structure boosting ionic diffusion and high-voltage stability of sodium superionic conductors[J]. Advanced Materials, 2024, 36(3): 2308012. DOI: 10.1002/adma.202308012. |
[26] | LIN X T, ZHAO Y, WANG C H, et al. A dual anion chemistry-based superionic glass enabling long-cycling all-solid-state sodium-ion batteries[J]. Angewandte Chemie International Edition, 2024, 63(2): e202314181. DOI: 10.1002/anie.202314181. |
[27] | LIN X T, ZHANG S M, YANG M H, et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries[J]. Nature Materials, 2024, 24(1): 83-91. DOI: 10. 1038/s41563-024-02011-x. |
[28] | ZHAO T, SAMANTA B, DE IRUJO-LABALDE X M, et al. Sodium metal oxyhalides NaMOCl4(M=Nb, Ta) with high ionic conductivities[J]. ACS Materials Letters, 2024, 6(8): 3683-3689. DOI: 10.1021/acsmaterialslett.4c01145. |
[29] | PARK J, SON J P, KO W, et al. NaAlCl4: New halide solid electrolyte for 3 V stable cost-effective all-solid-state Na-ion batteries[J]. ACS Energy Letters, 2022, 7(10): 3293-3301. DOI: 10.1021/acsenergylett.2c01514. |
[30] | HUANG H, WU H H, CHI C, et al. Phase-structure-dependent Na ion transport in yttrium-iodide sodium superionic conductor Na3YI6[J]. Journal of Materials Chemistry A, 2021, 9(46): 26256-26265. DOI: 10.1039/D1TA08086E. |
[31] | LIAN Y X, WU M S, XU B, et al. Phase-structure design for sodium chloride solid electrolytes with outstanding performance: A first-principles approach[J]. Journal of Materials Chemistry A, 2023, 11(4): 1906-1919. DOI: 10.1039/D2TA07603A. |
[32] | BOGACZ A, BROS J, GAUNE-ESCARD M, et al. New fast-ion conductors from uranium halides-the UCl6/Na2UBr6 structures[J]. Journal of Physics C: Solid State Physics, 1980, 13(29): 5273. DOI: 10.1088/0022-3719/13/29/008. |
[33] | FOUQUE Y, GAUNE-ESCARD M, SZCZEPANIAK W, et al. Synthèse, mesures des conductibilités électriques et des entropies de changements d'état pour le composé Na2UBr6[J]. Journal de Chimie Physique, 1978, 75: 360-366. DOI: 10.1051/jcp/1978750360. |
[34] | KWAK H, LYOO J, PARK J, et al. Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries[J]. Energy Storage Materials, 2021, 37: 47-54. DOI: 10.1016/j.ensm.2021.01.026. |
[35] | LISSNER F, KRÄMER K, SCHLEID T, et al. Die chloride Na3 xM2- xCl6(M=La, Sm) und NaM2Cl6 (M=Nd, Sm): Derivate des UCl3-typs. synthese, kristallstruktur und röntgenabsorptionsspektroskopie (XANES)[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 1994, 620(3): 444-450. DOI: 10.1002/zaac.199462 00307. |
[36] | LUTZ H D, WUSSOW K, KUSKE P. Ionic conductivity, structural, IR and Raman Spectroscopic data of olivine, Sr2PbO4, and Na2CuF4 type lithium and sodium chlorides Li2ZnCl4 and Na2MCl4(M=Mg, Ti, Cr, Mn, Co, Zn, Cd) [J]. 1987, 42(11): 1379-86. |
[37] | KANNO R, TAKEDA Y, MURATA K, et al. Crystal structure of double chlorides, Na2MCl4(M=Mg, Cr, Cd): Correlation with ionic conductivity[J]. Solid State Ionics, 1990, 39(3/4): 233-244. DOI: 10.1016/0167-2738(90)90402-D. |
[38] | YU S, KIM K, WOOD B C, et al. Structural design strategies for superionic sodium halide solid electrolytes[J]. Journal of Materials Chemistry A, 2022, 10(45): 24301-24309. DOI: 10.1039/D2TA05158C. |
[39] | PARK D, KIM K, CHUN G H, et al. Materials design of sodium chloride solid electrolytes Na3MCl6 for all-solid-state sodium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(40): 23037-23045. DOI: 10.1039/D1TA07050A. |
[40] | YAMADA K, KUMANO K, OKUDA T. Conduction path of the sodium ion in Na3InCl6 studied by X-ray diffraction and 23Na and 115In NMR[J]. Solid State Ionics, 2005, 176(7/8): 823-829. DOI: 10.1016/j.ssi.2004.10.016. |
[41] | QIE Y, WANG S, FU S J, et al. Yttrium-sodium halides as promising solid-state electrolytes with high ionic conductivity and stability for Na-ion batteries[J]. The Journal of Physical Chemistry Letters, 2020, 11(9): 3376-3383. DOI: 10.1021/acs.jpclett.0c00010. |
[42] | NIU X Y, DOU X Y, FU C Y, et al. Sodium halide solid state electrolyte of Na3YBr6 with low activation energy[J]. RSC Advances, 2024, 14(21): 14716-14721. DOI: 10.1039/D4RA026 63B. |
[43] | XU X L, LI Y X, WANG X, et al. Effect of lattice fluoride and borohydride on the electrochemical performances of NaAlCl4 solid electrolyte[J]. Journal of Solid State Electrochemistry, 2024, 28(9): 3501-3507. DOI: 10.1007/s10008-024-05838-1. |
[44] | RUOFF E, KMIEC S, MANTHIRAM A. Enhanced interfacial conduction in low-cost NaAlCl4 composite solid electrolyte for solid-state sodium batteries[J]. Advanced Energy Materials, 2024, 14(37): 2402091. DOI: 10.1002/aenm.202402091. |
[45] | MIYAZAKI R, NAKAYAMA M, HIHARA T. Experimental study on Na+ conductivity in NaAlBr4 and atomic-scale investigation of Na+ conduction[J]. Journal of Solid State Electrochemistry, 2025, 29(2): 585-593. DOI: 10.1007/s10008-024-06086-z. |
[46] | DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nature Energy, 2023, 8(11): 1221-1228. DOI: 10.1038/s41560-023-01356-y. |
[47] | DEYSHER G, CHEN Y T, SAYAHPOUR B, et al. Evaluating electrolyte-anode interface stability in sodium all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 47706-47715. DOI: 10.1021/acsami.2c12759. |
[48] | PARK J, HAN D, SON J P, et al. Extending the electrochemical window of Na+ halide nanocomposite solid electrolytes for 5 V-class all-solid-state Na-ion batteries[J]. ACS Energy Letters, 2024, 9(5): 2222-2230. DOI: 10.1021/acsenergylett.4c00490. |
[1] | 何特特, 卢洋, 刘洋, 徐斌, 陈永乐, 刘芳洋. 硫化锂:全固态电池时代的“基石”材料[J]. 储能科学与技术, 2025, 14(3): 898-912. |
[2] | 王钦, 张艳岗, 梁君飞, 王华. 硅基固态电池的界面失效挑战与应对策略[J]. 储能科学与技术, 2025, 14(2): 570-582. |
[3] | 李卓, 郭新. 面向高比能固态电池的聚合物基电解质固化技术[J]. 储能科学与技术, 2024, 13(1): 212-230. |
[4] | 李宇航, 韩卓, 安旭飞, 张丹丰, 郑国瑞, 柳明, 贺艳兵. 固体核磁共振技术解析固态电池离子输运机制研究进展[J]. 储能科学与技术, 2024, 13(1): 178-192. |
[5] | 李枫, 程晓斌, 罗锦达, 姚宏斌. 金属氯化物固态电解质及其全固态电池研究现状与展望[J]. 储能科学与技术, 2024, 13(1): 193-211. |
[6] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[7] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
[8] | 江训昌, 廖敏会, 周洋, 杨大祥, 王强. 纳米纤维膜基弹性固态电解质的设计及性能研究[J]. 储能科学与技术, 2023, 12(11): 3307-3317. |
[9] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[10] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[11] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[12] | 李素丽, 伍鹏, 肖益蓉, 于佩雯, 潘跃德, 杨文. 甲氧基聚乙二醇丙烯酸酯在全固态电池中的应用[J]. 储能科学与技术, 2022, 11(12): 3768-3775. |
[13] | 廖敏会, 杨大祥, 周洋, 万仁杰, 刘瑞平, 王强. 玻璃纤维布基多层复合固态电解质的制备及其性能[J]. 储能科学与技术, 2022, 11(10): 3090-3099. |
[14] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[15] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||