储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3373-3388.doi: 10.19799/j.cnki.2095-4239.2025.0150
• 储能材料与器件 • 上一篇
李秀春1,2(), 常永刚2, 解炜2, 李晓明3, 陈成猛3(
)
收稿日期:
2025-02-17
修回日期:
2025-03-12
出版日期:
2025-09-28
发布日期:
2025-09-05
通讯作者:
陈成猛
E-mail:lixiuchun@chinacoal.com;chencm@sxicc.ac.cn
作者简介:
李秀春(1965—),男,本科,高级工程师,从事煤炭工艺研发,E-mail:lixiuchun@chinacoal.com;
基金资助:
Xiuchun LI1,2(), Yonggang CHANG2, Wei XIE2, Xiaoming LI3, Chengmeng CHEN3(
)
Received:
2025-02-17
Revised:
2025-03-12
Online:
2025-09-28
Published:
2025-09-05
Contact:
Chengmeng CHEN
E-mail:lixiuchun@chinacoal.com;chencm@sxicc.ac.cn
摘要:
钠离子电池凭借资源丰富、成本低廉等优势,成为一种极具潜力的储能技术。作为钠离子电池的关键组成部分,负极材料的开发至关重要。炭基材料因其结构稳定、成本低廉、安全性高等优势,被认为是最有商业化应用前景的负极材料。煤具有成本低、碳收率高、分子结构可调等特点,被认为是一种优质的碳源。然而, 煤固有的高芳香性与组分的高复杂性导致了其衍生炭微晶结构高度有序且结构演变不可控,严重阻碍了高性能煤基炭负极材料的设计。本文针对钠离子电池煤基炭负极材料发展的关键问题,介绍了煤炭结构、性质与其热解机理,并从无定形碳微观结构调控方面总结了以煤为碳源制备钠离子电池负极的最新技术研究进展,最后针对煤基炭负极材料未来面临的问题与研究进展进行了讨论与展望,旨在为高性能煤基炭负极材料的开发及应用提供指导。
中图分类号:
李秀春, 常永刚, 解炜, 李晓明, 陈成猛. 钠离子电池煤基炭负极可控制备:研究进展与展望[J]. 储能科学与技术, 2025, 14(9): 3373-3388.
Xiuchun LI, Yonggang CHANG, Wei XIE, Xiaoming LI, Chengmeng CHEN. Controllable preparation of coal-based carbon anodes for sodium-ion batteries: Research progress and prospects[J]. Energy Storage Science and Technology, 2025, 14(9): 3373-3388.
[1] | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. DOI: 10.1039/C6CS00776G. |
[2] | KALAMARAS E, MAROTO-VALER M M, SHAO M H, et al. Solar carbon fuel via photoelectrochemistry[J]. Catalysis Today, 2018, 317: 56-75. DOI: 10.1016/j.cattod.2018.02.045. |
[3] | CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312. DOI: 10.1016/j.pnsc.2008.07.014. |
[4] | SINGH A N, ISLAM M, MEENA A, et al. Unleashing the potential of sodium-ion batteries: Current state and future directions for sustainable energy storage[J]. Advanced Functional Materials, 2023, 33(46): 2304617. DOI: 10.1002/adfm.202304617. |
[5] | HIRSH H S, LI Y X, TAN D H S, et al. Sodium-ion batteries paving the way for grid energy storage[J]. Advanced Energy Materials, 2020, 10(32): 2001274. DOI: 10.1002/aenm.202001274. |
[6] | LI Y D, CHEN X Q, ZENG Z H, et al. Coal-based electrodes for energy storage systems: Development, challenges, and prospects[J]. ACS Applied Energy Materials, 2022, 5(6): 7874-7888. DOI: 10.1021/acsaem.2c01423. |
[7] | 宋文革 曾, 王斌. 低阶煤基炭材料研究进展 [J]. 新型炭材料(中英文): 1-22. |
[8] | PICKEL W, KUS J, FLORES D, et al. Classification of liptinite-ICCP system 1994[J]. International Journal of Coal Geology, 2017, 169: 40-61. DOI: 10.1016/j.coal.2016.11.004. |
[9] | The new inertinite classification (ICCP system 1994)[J]. Fuel, 2001, 80(4): 459-471. DOI: 10.1016/S0016-2361(00)00102-2. |
[10] | INT COMMITTEE COAL ORGANIC P. The new vitrinite classification (ICCP System 1994) [J]. Fuel, 1998, 77(5): 349-58. |
[11] | SHI L, LIU Q Y, GUO X J, et al. Pyrolysis behavior and bonding information of coal—A TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132. DOI: 10.1016/j.fuproc.2012.06.023. |
[12] | 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439. DOI: 10.1360/N032014-00159. |
LIU Z Y. Advancement in coal chemistry: Structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1439. DOI: 10.1360/N032014-00159. | |
[13] | LU H Y, SUN S F, XIAO L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 729-735. DOI: 10.1021/acsaem.8b01784. |
[14] | LI Y M, HU Y S, QI X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197. DOI: 10.1016/j.ensm.2016.07.006. |
[15] | 王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. DOI: 10.11949/0438-1157.20210668. |
WANG B Y, XIA J L, DONG X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750. DOI: 10.11949/0438-1157.20210668. | |
[16] | ZENG H T, KANG W W, XING B L, et al. Microstructure modulation of hard carbon derived from long-flame coal to improve electrochemical sodium storage performances[J]. Fuel Processing Technology, 2025, 267: 108159. DOI: 10.1016/j.fuproc.2024.108159. |
[17] | WANG L B, XU Z K, LIN P, et al. Oxygen-crosslinker effect on the electrochemical characteristics of asphalt-based hard carbon anodes for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 15(7): DOI:10.1002/aenm.202403084. |
[18] | 郭行, 韩纹莉, 董晓玲, 等. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. DOI: 10.11949/0438-1157.20211503. |
GUO H, HAN W L, DONG X L, et al. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806. DOI: 10.11949/0438-1157.20211503. | |
[19] | DONG S, SONG Y L, FANG Y Z, et al. Rapid carbonization of anthracite coal via flash joule heating for sodium ion storage[J]. ACS Applied Energy Materials, 2024, 7(24): 11288-11296. DOI: 10.1021/acsaem.3c02975. |
[20] | LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. DOI: 10.1002/aenm.201800108. |
[21] | DU Y F, SUN G H, LI Y, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. DOI: 10.1016/j.carbon.2021. 03.016. |
[22] | LOU Z J, WANG H, WU D Y, et al. Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage[J]. Fuel, 2022, 310: 122072. DOI: 10.1016/j.fuel.2021.122072. |
[23] | MA R, CHEN Y X, LI Q, et al. Oxygen-driven closing pore formation in coal-based hard carbon for low-voltage rapid sodium storage[J]. Chemical Engineering Journal, 2024, 493: 152389. DOI: 10.1016/j.cej.2024.152389. |
[24] | SU M Y, ZHANG K Y, ANG E H, et al. Structural regulation of coal-derived hard carbon anode for sodium-ion batteries via pre-oxidation[J]. Rare Metals, 2024, 43(6): 2585-2596. DOI: 10.1007/s12598-023-02607-3. |
[25] | ZHANG H M, MING H, ZHANG W F, et al. Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23766-23774. DOI: 10.1021/acsami.7b05687. |
[26] | ZHANG H M, ZHANG W F, MING H, et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 341: 280-288. DOI: 10.1016/j.cej. 2018.02.016. |
[27] | XIE F, XU Z, JENSEN A C S, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Advanced Functional Materials, 2019, 29(24): 1901072. DOI: 10.1002/adfm.201901072. |
[28] | ZHANG H M, ZHANG W F, HUANG F Q. Hard carbon microsphere with expanded graphitic interlayers derived from a highly branched polymer network as ultrahigh performance anode for practical sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61180-61188. DOI: 10.1021/acsami.1c19199. |
[29] | CHEN H, SUN N, ZHU Q Z, et al. Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries[J]. Advanced Science, 2022, 9(20): 2200023. DOI: 10.1002/advs.202200023. |
[30] | ZHOU Z R, WANG Z J, FAN L S. In-situ capture defects through molecule grafting assisted in coal-based hard carbon anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2024, 490: 151428. DOI: 10.1016/j.cej.2024.151428. |
[31] | MA H Z, TANG Y K, TANG B, et al. Enhancing the electrochemical performance of semicoke‐based hard carbon anode through oxidation-crosslinking strategy for low‐cost sodium‐ion batteries [J]. Carbon Energy, 2024, 6(12): 138-150.DOI:10.1002/cey2.584. |
[32] | SONG W J, TANG Y K, LIU J M, et al. Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 946: 169384. DOI: 10.1016/j.jallcom.2023.169384. |
[33] | LI R, YANG B R, HU A J, et al. Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries[J]. Carbon, 2023, 215: 118489. DOI: 10.1016/j.carbon.2023.118489. |
[34] | SUN D, LUO B, WANG H Y, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: 103937. DOI: 10.1016/j.nanoen.2019.103937. |
[35] | CHEN L, BAI L L, YEO J, et al. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27499-27507. DOI: 10.1021/acsami. 0c04469. |
[36] | DENG W T, CAO Y J, YUAN G M, et al. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47728-47739. DOI: 10.1021/acsami.1c15884. |
[37] | XU T Y, QIU X, ZHANG X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chemical Engineering Journal, 2023, 452: 139514. DOI: 10.1016/j.cej. 2022.139514. |
[38] | XIA J L, YAN D, GUO L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials, 2020, 32(21): 2000447. DOI: 10.1002/adma.202000447. |
[39] | ZHAO H Q, YE J Q, SONG W, et al. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 6991-7000. DOI: 10.1021/acsami.9b11627. |
[40] | SUN F, WANG H, QU Z B, et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms[J]. Advanced Energy Materials, 2021, 11(1): 2002981. DOI: 10.1002/aenm.202002981. |
[41] | CHEN H, SUN N, WANG Y X, et al. Microcrystalline engineering of anthracite-based carbon via salt-assisted ball milling for enhanced sodium storage performance[J]. Small, 2025, 21(8): 2406497. DOI: 10.1002/smll.202406497. |
[42] | QIAN W Y, ZHOU X Y, LIU X Y, et al. Breakage of the dense structure of coal precursors increases the plateau capacity of hard carbon for sodium storage[J]. Chemical Science, 2025, 16(1): 104-112. DOI: 10.1039/D4SC06549B. |
[43] | CHEN H, SUN N, WANG Y X, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541. DOI: 10.1016/j.ensm. 2023.01.042. |
[44] | WANG H H, NIU H Z, SHU K W, et al. Regulating the "core-shell" microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode[J]. Journal of Materials Science & Technology, 2025, 209: 161-170. DOI: 10.1016/j.jmst.2024.05.009. |
[45] | HE H N, HE J, YU H B, et al. Dual-interfering chemistry for soft-hard carbon translation toward fast and durable sodium storage[J]. Advanced Energy Materials, 2023, 13(16): 2300357. DOI: 10.1002/aenm.202300357. |
[46] | AHMADPOUR A, DO D D. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon, 1996, 34(4): 471-479. DOI: 10.1016/0008-6223(95)00204-9. |
[47] | ILLÁN-GÓMEZ M J, GARCÍA-GARCÍA A, SALINAS-MARTÍNEZ DE LECEA C, et al. Activated carbons from Spanish coals. 2. chemical activation[J]. Energy & Fuels, 1996, 10(5): 1108-1114. DOI: 10.1021/ef950195+. |
[48] | WANG K F, SUN F, WANG H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials, 2022, 32(34): 2203725. DOI: 10.1002/adfm.202203725. |
[49] | GAO S S, TANG Y K, WANG L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263. DOI: 10.1021/acssuschemeng.7b03421. |
[50] | WANG J, CUI Y L, GU Y, et al. Coal-based modified carbon for high performance sodium-ion battery[J]. Solid State Ionics, 2021, 368: 115701. DOI: 10.1016/j.ssi.2021.115701. |
[51] | WANG K F, QIAN J, SUN F, et al. In-situ catalytic conversion of coal pyrolysis gas to nanoporous carbon rods and superior sodium ion storage performance[J]. Fuel, 2020, 281: 118782. DOI: 10.1016/j.fuel.2020.118782. |
[52] | WEI S W, DENG X Y, LI W, et al. Recyclable molten-salt-assisted synthesis of N-doped porous carbon nanosheets from coal tar pitch for high performance sodium batteries[J]. Chemical Engineering Journal, 2023, 455: 140540. DOI: 10.1016/j.cej. 2022.140540. |
[53] | ZHAO G X, XU T Q, ZHAO Y M, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103282. DOI: 10.1016/j.ensm.2024.103282. |
[54] | XIAO N, WEI Y B, LI H Q, et al. Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction[J]. Carbon, 2020, 162: 431-437. DOI: 10.1016/j.carbon.2020.02.015. |
[1] | 向靖宇, 钟伟, 程时杰, 谢佳. 助力钠电池储能:预钠化技术研究新进展[J]. 储能科学与技术, 2025, 14(8): 3051-3064. |
[2] | 王斌, 刘金恺, 姜晓霞, 白宁, 鹿院卫. 基于经济性分析的熔盐储热辅助燃煤机组灵活调峰系统优化[J]. 储能科学与技术, 2025, 14(7): 2729-2737. |
[3] | 刘德帅, 朱慧琴, 孙睿浩, 李蒙, 巩文豪, 李晓辉, 钱伟伟. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. |
[4] | 李昱, 李丹丹, 谢飞, 唐彬, 容晓晖, 梁沁沁, 胡勇胜. 钠离子电池正极预钠化技术进展[J]. 储能科学与技术, 2025, 14(5): 1748-1757. |
[5] | 唐从庆, 蔡京升. 补钠技术在钠离子电池中的应用进展[J]. 储能科学与技术, 2025, 14(5): 1884-1899. |
[6] | 单福星, 霍海波, 张铮, 渐彬彬, 陈军. 钠离子电池的阶梯充电策略及优化[J]. 储能科学与技术, 2025, 14(4): 1668-1678. |
[7] | 闻有为, 滕安琪, 李勇琦, 田佳敏, 丁康杰, 段强领, 王青松. 不同放电倍率下钠离子电池的电性能与产热行为研究[J]. 储能科学与技术, 2025, 14(4): 1687-1697. |
[8] | 李勇琦, 李志远, 闻有为, 王成东, 段强领, 王青松. 大容量钠离子电池热失控特性实验研究[J]. 储能科学与技术, 2025, 14(4): 1657-1667. |
[9] | 王蕾, 刘少冕, 范凤兰, 杨子腾. 速生木基钠离子电池硬碳负极构效关系[J]. 储能科学与技术, 2025, 14(3): 1107-1114. |
[10] | 陈钊, 梁沁沁, 李玉婷, 谢飞, 唐彬, 李建新, 陆雅翔, 陈爱兵, 胡勇胜. 钠离子电池锡基合金类负极材料研究进展[J]. 储能科学与技术, 2025, 14(3): 883-897. |
[11] | 潘美玲, 孙楠楠, 赵志超. 二维VC2作为钠离子电池负极材料的理论研究[J]. 储能科学与技术, 2025, 14(2): 497-504. |
[12] | 王阳峰, 侯佳傲, 朱紫宸, 所聪, 侯栓弟. 钠离子电池硬碳闭孔结构研究进展[J]. 储能科学与技术, 2025, 14(2): 555-569. |
[13] | 常永刚, 张晋豪, 解炜, 李秀春, 王毅林, 陈成猛. 钠离子电池硬碳负极容量提升策略研究进展[J]. 储能科学与技术, 2025, 14(2): 544-554. |
[14] | 张李帅, 张艺菲, 马伊扬, 赵思博, 刘洪全, 石盛庭, 钟艳君. 铁基普鲁士蓝类似物钠离子电池正极材料研究进展[J]. 储能科学与技术, 2025, 14(2): 525-543. |
[15] | 乌兰, 杨杰, 耿磊, 胡润, 彭尚龙. 钠离子电池正极表面残余碱转换钠补偿包覆层[J]. 储能科学与技术, 2025, 14(1): 21-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||