储能科学与技术

• •    

助力钠电池储能:预钠化技术研究新进展

向靖宇1,2(), 钟伟1,3, 程时杰1, 谢佳1()   

  1. 1.华中科技大学电气与电子工程学院,强电磁技术全国重点实验室,湖北 武汉 430074
    2.华中科技大学化学与化工学院,湖北 武汉 430074
    3.华中科技大学材料科学与工程学院,湖北 武汉 430074
  • 收稿日期:2025-04-23 修回日期:2025-05-06
  • 通讯作者: 谢佳 E-mail:xiangjingyu@hust.edu.cn;xiejia@hust.edu.cn
  • 作者简介:向靖宇(2001—),男,博士研究生在读,研究方向为电化学储能材料,E-mail:xiangjingyu@hust.edu.cn
  • 基金资助:
    国家重点研发计划,高功率锂离子电池储能技术(2022YFB2404800)

Boosting Sodium Battery Energy Storage: New Research Progress of Pre-sodiation Technology

Jingyu Xiang1,2(), Wei Zhong1,3, Shijie Cheng1, Jia Xie1()   

  1. 1.School of Electrical and Electronic Engineering, National Key Laboratory of Strong Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    2.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    3.School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2025-04-23 Revised:2025-05-06
  • Contact: Jia Xie E-mail:xiangjingyu@hust.edu.cn;xiejia@hust.edu.cn

摘要:

钠与锂具有相似的物理化学性质,且钠资源储量丰富、分布广泛,因此钠离子电池被认为是锂离子电池储能体系的重要补充,在大规模储能应用和短时高频储能应用中展现出广阔前景。然而,储钠负极材料的初始库伦效率(ICE)普遍较低,无法发挥其理论容量。预钠化技术作为目前最有效的活性钠补偿策略之一,可有效弥补活性钠的损失。本文全面分析了近年来预钠化技术面临的主要挑战,总结了针对挑战所提出的新方法,并根据各类钠源的氧化还原性质,将目前的预钠化技术分为还原型预钠化技术和氧化型预钠化技术,对比了各类预钠化方法的优缺点及工业化难度,重点分析阐述了各类预钠化技术的作用机理和研究现状,展望了预钠化技术的发展前景。旨在深化对预钠化技术的理解,为优化和开发适用于高功率场景的可规模化应用的新型预钠化技术提供理论指导和创新思路。结合现有研究成果,提出固态氧化型预钠化材料有望实现全生命周期多次补钠,为实现高功率、高能量密度钠离子电池提供技术基础。

关键词: 钠离子电池, 预钠化, 库伦效率, 长寿命, 高能量密度, 高功率密度

Abstract:

Sodium and lithium share similar physicochemical properties, and sodium resources are abundant and widely distributed. Therefore, sodium-ion batteries (SIBs) are considered a promising complement to lithium-ion battery energy storage systems, demonstrating broad prospects for large-scale energy storage and short-term high-frequency energy storage applications. However, the initial Coulombic efficiency (ICE) of sodium-storage anode materials is generally low, preventing them from achieving their theoretical capacity. Prelithiation technology, as one of the most effective active sodium compensation strategies, can effectively mitigate active sodium loss. This paper comprehensively analyzes the major challenges faced by pre-sodiation technology in recent years and summarizes novel approaches proposed to address these challenges. Based on the redox properties of various sodium sources, current pre-sodiation techniques are categorized into reductive pre-sodiation and oxidative pre-sodiation. The advantages, disadvantages, and industrialization feasibility of different pre-sodiation methods are compared, with a focus on elucidating their mechanisms and research progress. Furthermore, the development prospects of pre-sodiation technology are discussed. The aim of this review is to deepen the understanding of pre-sodiation technology and provide theoretical guidance and innovative insights for optimizing and developing novel pre-sodiation techniques suitable for high-power applications at scale. Based on existing research, we propose that solid-state oxidative pre-sodiation materials hold promise for enabling multiple sodium replenishment throughout the battery's lifecycle, thereby laying a technical foundation for high-power, high-energy-density sodium-ion batteries.

Key words: sodium-ion batteries, pre-sodiation, coulombic efficiency, long cycle life, high energy density, high power density

中图分类号: