• •
收稿日期:
2025-04-23
修回日期:
2025-05-06
通讯作者:
谢佳
E-mail:xiangjingyu@hust.edu.cn;xiejia@hust.edu.cn
作者简介:
向靖宇(2001—),男,博士研究生在读,研究方向为电化学储能材料,E-mail:xiangjingyu@hust.edu.cn;
基金资助:
Jingyu Xiang1,2(), Wei Zhong1,3, Shijie Cheng1, Jia Xie1(
)
Received:
2025-04-23
Revised:
2025-05-06
Contact:
Jia Xie
E-mail:xiangjingyu@hust.edu.cn;xiejia@hust.edu.cn
摘要:
钠与锂具有相似的物理化学性质,且钠资源储量丰富、分布广泛,因此钠离子电池被认为是锂离子电池储能体系的重要补充,在大规模储能应用和短时高频储能应用中展现出广阔前景。然而,储钠负极材料的初始库伦效率(ICE)普遍较低,无法发挥其理论容量。预钠化技术作为目前最有效的活性钠补偿策略之一,可有效弥补活性钠的损失。本文全面分析了近年来预钠化技术面临的主要挑战,总结了针对挑战所提出的新方法,并根据各类钠源的氧化还原性质,将目前的预钠化技术分为还原型预钠化技术和氧化型预钠化技术,对比了各类预钠化方法的优缺点及工业化难度,重点分析阐述了各类预钠化技术的作用机理和研究现状,展望了预钠化技术的发展前景。旨在深化对预钠化技术的理解,为优化和开发适用于高功率场景的可规模化应用的新型预钠化技术提供理论指导和创新思路。结合现有研究成果,提出固态氧化型预钠化材料有望实现全生命周期多次补钠,为实现高功率、高能量密度钠离子电池提供技术基础。
中图分类号:
向靖宇, 钟伟, 程时杰, 谢佳. 助力钠电池储能:预钠化技术研究新进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0399.
Jingyu Xiang, Wei Zhong, Shijie Cheng, Jia Xie. Boosting Sodium Battery Energy Storage: New Research Progress of Pre-sodiation Technology[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0399.
1 | KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage [J]. Angewandte Chemie International Edition, 2015, 54(11): 3431-48. |
2 | KALAMARAS E, MAROTO-VALER M M, SHAO M, et al. Solar carbon fuel via photoelectrochemistry [J]. Catalysis Today, 2018, 317: 56-75. |
3 | BIN D, WANG F, TAMIRAT A G, et al. Progress in Aqueous Rechargeable Sodium‐Ion Batteries [J]. Advanced Energy Materials, 2018, 8(17): 1703008. |
4 | NAYAK P K, YANG L, BREHM W, et al. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises [J]. Angewandte Chemie International Edition, 2018, 57(1): 102-20. |
5 | ZHENG W, LIANG G, LIU Q, et al. The promise of high-entropy materials for high-performance rechargeable Li-ion and Na-ion batteries [J]. Joule, 2023, 7(12): 2732-48. |
6 | ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries [J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-77. |
7 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed [J]. Advanced Energy Materials, 2018, 8(16): 1800079. |
8 | SONG J, XIAO B, LIN Y, et al. Interphases in Sodium‐Ion Batteries [J]. Advanced Energy Materials, 2018, 8(17): 1703082. |
9 | EFTEKHARI A, KIM D-W. Sodium-ion batteries: New opportunities beyond energy storage by lithium [J]. Journal of Power Sources, 2018, 395: 336-48. |
10 | XU H, LI H, WANG X. The Anode Materials for Lithium‐Ion and Sodium‐Ion Batteries Based on Conversion Reactions: a Review [J]. ChemElectroChem, 2023, 10(9): e202201151. |
11 | MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries [J]. Chemical Reviews, 2013, 113(8): 6552-91. |
12 | QIU S, XIAO L, SUSHKO M L, et al. Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for High‐Efficiency Sodium Ion Storage [J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
13 | LI Y, LIU G, CHE J, et al. Review on layered oxide cathodes for sodium‐ion batteries: Degradation mechanisms, modification strategies, and applications [J]. Interdisciplinary Materials, 2024, 4(1): 24-51. |
14 | CHEN M, LIU Q, WANG S W, et al. High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies [J]. Advanced Energy Materials, 2019, 9(14): 1803609. |
15 | CHENG L-P, LUO G, ZHAO Q-Q, et al. Synthesis, structures and luminescence of silver (I) thiolate nanoclusters based on anion templates [J]. SCIENTIA SINICA Chimica, 2017, 47(6): 695-704. |
16 | QIAO S, ZHOU Q, MA M, et al. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries [J]. ACS Nano, 2023, 17(12): 11220-52. |
17 | QIAN J, WU C, CAO Y, et al. Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries [J]. Advanced Energy Materials, 2018, 8(17): 1702619. |
18 | LIANG J-M, ZHANG L-J, XILI D-G, et al. Research progress on tin-based anode materials for sodium ion batteries [J]. Rare Metals, 2020, 39(9): 1005-18. |
19 | SUN L, ZENG J, WAN X, et al. Recent progress of interface modification of layered oxide cathode material for sodium‐ion batteries [J]. Electron, 2024, 2(2): e31. |
20 | ZENG X, LI M, ABD EL‐HADY D, et al. Commercialization of Lithium Battery Technologies for Electric Vehicles [J]. Advanced Energy Materials, 2019, 9(27): 1900161. |
21 | SONG M, HU Z, YUAN C, et al. Locally Curved Surface with CoN4 Sites Enables Hard Carbon with Superior Sodium‐Ion Storage Performances at -40 ℃ [J]. Advanced Energy Materials, 2024, 14(23): 2304537. |
22 | CHEN J, ADIT G, LI L, et al. Optimization Strategies Toward Functional Sodium‐Ion Batteries [J]. Energy & Environmental Materials, 2023, 6(4): e12633. |
23 | CUI J, YAO S, KIM J-K. Recent progress in rational design of anode materials for high-performance Na-ion batteries [J]. Energy Storage Materials, 2017, 7: 64-114. |
24 | GABRIEL E, MA C, GRAFF K, et al. Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives [J]. eScience, 2023, 3(5): 100139. |
25 | QIAN J, XIONG Y, CAO Y, et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries [J]. Nano Letters, 2014, 14(4): 1865-9. |
26 | QIAN J, CHEN Y, WU L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries [J]. Chemical Communications 2012, 48(56): 7070-2. |
27 | BODENES L, DARWICHE A, MONCONDUIT L, et al. The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries [J]. Journal of Power Sources, 2015, 273: 14-24. |
28 | WINKLER V, KILIBARDA G, SCHLABACH S, et al. Surface Analytical Study Regarding the Solid Electrolyte Interphase Composition of Nanoparticulate SnO2 Anodes for Li-Ion Batteries [J]. The Journal of Physical Chemistry C, 2016, 120(43): 24706-14. |
29 | PAN Y, ZHANG Y, PARIMALAM B S, et al. Investigation of the solid electrolyte interphase on hard carbon electrode for sodium ion batteries [J]. Journal of Electroanalytical Chemistry, 2017, 799: 181-6. |
30 | RAJAGOPALAN R, TANG Y, JIA C, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions [J]. Energy & Environmental Science, 2020, 13(6): 1568-92. |
31 | BOMMIER C, JI X. Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes [J]. Small, 2018, 14(16): e1703576. |
32 | ZHANG M, LI Y, WU F, et al. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode [J]. Nano Energy, 2021, 82: 105738. |
33 | YUAN Y, JAN S, WANG Z, et al. A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(14): 5555-9. |
34 | LIU M, ZHANG J, GUO S, et al. Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries [J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17620-7. |
35 | PATRA J, HUANG H-T, XUE W, et al. Moderately concentrated electrolyte improves solid–electrolyte interphase and sodium storage performance of hard carbon [J]. Energy Storage Materials, 2019, 16: 146-54. |
36 | HE H, SUN D, TANG Y, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries [J]. Energy Storage Materials, 2019, 23: 233-51. |
37 | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems [J]. Energy & Environmental Science, 2012, 5(3): 5884-901. |
38 | KUBOTA K, KOMABA S. Review—Practical Issues and Future Perspective for Na-Ion Batteries [J]. Journal of The Electrochemical Society, 2015, 162(14): A2538-A50. |
39 | DENG J, LUO W B, CHOU S L, et al. Sodium‐Ion Batteries: From Academic Research to Practical Commercialization [J]. Advanced Energy Materials, 2017, 8(4): 1701428. |
40 | GLUSHENKOV A M. Recent commentaries on the expected performance, advantages and applications of sodium-ion batteries [J]. Energy Materials, 2023: 300010. |
41 | JIN T, WANG P F, WANG Q C, et al. Realizing Complete Solid‐Solution Reaction in High Sodium Content P2‐Type Cathode for High‐Performance Sodium‐Ion Batteries [J]. Angewandte Chemie International Edition, 2020, 59(34): 14511-6. |
42 | ZHAO C, YAO Z, WANG Q, et al. Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes [J]. Journal of the American Chemical Society, 2020, 142(12): 5742-50. |
43 | FANG K, TANG Y, LIU J, et al. Injecting Excess Na into a P2-Type Layered Oxide Cathode to Achieve Presodiation in a Na-Ion Full Cell [J]. Nano Letters, 2023, 23(14): 6681-8. |
44 | JO J H, CHOI J U, KONAROV A, et al. Sodium‐Ion Batteries: Building Effective Layered Cathode Materials with Long‐Term Cycling by Modifying the Surface via Sodium Phosphate [J]. Advanced Functional Materials, 2018, 28(14): 1705968. |
45 | TANG R, LI K, LIU C, et al. Long-lifespan benzoquinone-intercalated vanadium oxide with vacancies and disorders on the (00l) facets for efficient sodium-ion battery: A facile approach to Na+ capture and pre-sodiation [J]. Chemical Engineering Journal, 2023, 453: 139734. |
46 | ZHANG X, FAN C, HAN S. Improving the initial Coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density [J]. Journal of Materials Science, 2017, 52(17): 10418-30. |
47 | MOEEZ I, JUNG H-G, LIM H-D, et al. Presodiation Strategies and Their Effect on Electrode–Electrolyte Interphases for High-Performance Electrodes for Sodium-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-401. |
48 | HOU L, LIU T, WANG H, et al. Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation [J]. Small, 2023, 19(21): 2207638. |
49 | WANG Y, LU J, DAI W, et al. On the Practicability of the Solid‐State Electrochemical Pre‐Sodiation Technique on Hard Carbon Anodes for Sodium‐Ion Batteries [J]. Advanced Functional Materials, 2024, 34(40): 2403841. |
50 | TANG J, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries [J]. Journal of Power Sources, 2018, 396: 476-82. |
51 | XIAO B, SOTO F A, GU M, et al. Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes [J]. Advanced Energy Materials, 2018, 8(24): 1801441. |
52 | TENG J, DAI B, ZHANG K, et al. Application of Sodium‐Rich Multifunctional Hard Carbon Synthesized via Multi‐Alloy Grafting Strategy for Presodiation in High‐Performance Sodium‐Ion Batteries [J]. Small, 2024, 20(49): 2407225. |
53 | SHEN Y, ZHANG J, PU Y, et al. Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery [J]. ACS Energy Letters, 2019, 4(7): 1717-24. |
54 | WU C, HU J, YE L, et al. Direct Regeneration of Spent Li-Ion Battery Cathodes via Chemical Relithiation Reaction [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16384-93. |
55 | ZHENG G, LIN Q, MA J, et al. Ultrafast presodiation of graphene anodes for high‐efficiency and high‐rate sodium‐ion storage [J]. InfoMat, 2021, 3(12): 1445-54. |
56 | QIN N, SUN Y, HU C, et al. Boosting high initial coulombic efficiency of hard carbon by in-situ electrochemical presodiation [J]. Journal of Energy Chemistry, 2023, 77: 310-6. |
57 | WANG Z, CHEN S, QIU J, et al. Full‐Cell Presodiation Strategy to Enable High‐Performance Na‐Ion Batteries [J]. Advanced Energy Materials, 2023, 13(45): 2302514. |
58 | MAN Q, WEI C, TIAN K, et al. Molecular‐Level Design of High Flash Point Solvents Enables High‐Safety and Dual‐Function Chemical Presodiation of Hard Carbon and Alloy Anodes for High‐Performance Sodium‐Ion Batteries [J]. Advanced Energy Materials, 2024, 14(24): 2401016. |
59 | ZHANG S, WANG J, CHEN K, et al. Aromatic Ketones as Mild Presodiating Reagents toward Cathodes for High‐Performance Sodium‐Ion Batteries [J]. Angewandte Chemie International Edition, 2024, 63(10): e202317439. |
60 | FANG H, GAO S, REN M, et al. Dual‐Function Presodiation with Sodium Diphenyl Ketone towards Ultra‐stable Hard Carbon Anodes for Sodium‐Ion Batteries [J]. Angewandte Chemie International Edition, 2022, 62(2): e202214717. |
61 | SHEN B, ZHAN R, DAI C, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells [J]. Journal of Colloid and Interface Science, 2019, 553: 524-9. |
62 | HU L, LI J, ZHANG Y, et al. Enhancing the Initial Coulombic Efficiency of Sodium‐Ion Batteries via Highly Active Na2S as Presodiation Additive [J]. Small, 2023, 19(46): 2304793. |
63 | JO J H, CHOI J U, PARK Y J, et al. A new pre-sodiation additive for sodium-ion batteries [J]. Energy Storage Materials, 2020, 32: 281-9. |
64 | JO C-H, CHOI J U, YASHIRO H, et al. Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries [J]. Journal of Materials Chemistry A, 2019, 7(8): 3903-9. |
65 | NIU Y B, GUO Y J, YIN Y X, et al. High‐Efficiency Cathode Sodium Compensation for Sodium‐Ion Batteries [J]. Advanced Materials, 2020, 32(33): 2001419. |
66 | ZHONG W, HE R, PENG L, et al. Lifecycle Synergistic Prelithiation Strategy of Both Anode and Cathode for High‐Performance Lithium‐Ion Batteries [J]. Advanced Energy Materials, 2025: 2406007. |
67 | ZHONG W, LI S, LIU M, et al. Hierarchical spherical Mo2C/N-doped graphene catalyst facilitates low-voltage Li2C2O4 prelithiation [J]. Nano Energy, 2023, 115: 108757. |
68 | ZHONG W, WU Q, WU Y, et al. Scalable spray-dried high-capacity MoC1-x/NC-Li2C2O4 prelithiation composite for lithium-ion batteries [J]. Energy Storage Materials, 2024, 68: 103318. |
69 | ZHONG W, ZHANG C, LI S, et al. Mo2C catalyzed low-voltage prelithiation using nano-Li2C2O4 for high-energy lithium-ion batteries [J]. Science China Materials, 2022, 66(3): 903-12. |
70 | PAN X, CHOJNACKA A, BéGUIN F. Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems [J]. Energy Storage Materials, 2021, 40: 22-30. |
71 | CHEN Y, ZHU Y, SUN Z, et al. Achieving High‐Capacity Cathode Presodiation Agent Via Triggering Anionic Oxidation Activity in Sodium Oxide [J]. Advanced Materials, 2024: 2407720. |
72 | CHEN S, WU G, JIANG H, et al. External Li supply reshapes Li deficiency and lifetime limit of batteries [J]. Nature, 2025, 638(8051): 676-83. |
73 | SONG Z, ZOU K, XIAO X, et al. Presodiation Strategies for the Promotion of Sodium-Based Energy Storage Systems [J]. Chemistry, 2021, 27(65): 16082-92. |
74 | ZHANG T, WANG R, HE B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: A mini review [J]. Electrochemistry Communications, 2021, 129: 107090. |
[1] | 王蕾, 刘少冕, 范凤兰, 杨子腾. 速生木基钠离子电池硬碳负极构效关系[J]. 储能科学与技术, 2025, 14(3): 1107-1114. |
[2] | 陈钊, 梁沁沁, 李玉婷, 谢飞, 唐彬, 李建新, 陆雅翔, 陈爱兵, 胡勇胜. 钠离子电池锡基合金类负极材料研究进展[J]. 储能科学与技术, 2025, 14(3): 883-897. |
[3] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[4] | 潘美玲, 孙楠楠, 赵志超. 二维VC2作为钠离子电池负极材料的理论研究[J]. 储能科学与技术, 2025, 14(2): 497-504. |
[5] | 王阳峰, 侯佳傲, 朱紫宸, 所聪, 侯栓弟. 钠离子电池硬碳闭孔结构研究进展[J]. 储能科学与技术, 2025, 14(2): 555-569. |
[6] | 常永刚, 张晋豪, 解炜, 李秀春, 王毅林, 陈成猛. 钠离子电池硬碳负极容量提升策略研究进展[J]. 储能科学与技术, 2025, 14(2): 544-554. |
[7] | 张李帅, 张艺菲, 马伊扬, 赵思博, 刘洪全, 石盛庭, 钟艳君. 铁基普鲁士蓝类似物钠离子电池正极材料研究进展[J]. 储能科学与技术, 2025, 14(2): 525-543. |
[8] | 乌兰, 杨杰, 耿磊, 胡润, 彭尚龙. 钠离子电池正极表面残余碱转换钠补偿包覆层[J]. 储能科学与技术, 2025, 14(1): 21-29. |
[9] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[10] | 要义杰, 张峻伟, 赵燕君, 梁宏成, 赵冬妮. 界面动力学对钠离子电池低温性能的影响[J]. 储能科学与技术, 2025, 14(1): 30-41. |
[11] | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05 @CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. |
[12] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[13] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[14] | 谭仕荣, 尹文骥, 曾翠鸿, 黎小琼, 訚硕, 纪方力, 胡思江, 王红强, 李庆余. 高温淬火对钠离子电池锰基层状正极材料结构和性能的影响[J]. 储能科学与技术, 2024, 13(7): 2399-2406. |
[15] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||