• •
李秀春1,2(), 常永刚2, 解炜2, 李晓明3, 陈成猛3(
)
收稿日期:
2025-02-22
修回日期:
2025-03-12
通讯作者:
陈成猛
E-mail:lixiuchun@chinacoal.com;chencm@sxicc.ac.cn
作者简介:
李秀春(1965—),男,本科,高级工程师,煤炭工艺,E-mail:lixiuchun@chinacoal.com;
基金资助:
Xiuchun Li1,2(), Yonggang Chang2, Wei Xie2, Xiaoming Li3, Cheng-meng Chen3(
)
Received:
2025-02-22
Revised:
2025-03-12
Contact:
Cheng-meng Chen
E-mail:lixiuchun@chinacoal.com;chencm@sxicc.ac.cn
摘要:
钠离子电池凭借资源丰富、成本低廉等优势,成为一种极具潜力的储能技术。作为钠离子电池的关键组成部分,负极材料的开发至关重要。炭基材料因其结构稳定、成本低廉、安全性高等优势,被认为是最有商业化应用前景的负极材料。煤具有成本低、碳收率高、分子结构可调等特点,被认为是一种优质的碳源。然而, 煤固有的高芳香性与组分的高复杂性导致了其衍生炭微晶结构高度有序且结构演变不可控,严重阻碍了高性能煤基炭负极材料的设计。本文针对钠离子电池煤基炭负极材料发展的关键问题,介绍了煤炭结构、性质与其热解机理,并从无定形炭微观结构调控方面总结了以煤为碳源制备钠离子电池负极的最新技术研究进展,最后针对煤基炭负极材料未来面临的问题与研究进展进行了讨论与展望,旨在为高性能煤基炭负极材料的开发及应用提供指导。
中图分类号:
李秀春, 常永刚, 解炜, 李晓明, 陈成猛. 钠离子电池煤基炭负极可控制备:研究进展与展望[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0150.
Xiuchun Li, Yonggang Chang, Wei Xie, Xiaoming Li, Cheng-meng Chen. Controllable Preparation of Coal-Based Carbon Anodes for Sodium-ion Batteries: Research Progress and Prospects[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0150.
1 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future [J]. Chemical Society Reviews, 2017, 46(12): 3529-614. |
2 | KALAMARAS E, MAROTO-VALER M M, SHAO M H, et al. Solar carbon fuel via photoelectrochemistry [J]. Catalysis Today, 2018, 317: 56-75. |
3 | CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review [J]. Progress in Natural Science-Materials International, 2009, 19(3): 291-312. |
4 | SINGH A N, ISLAM M, MEENA A, et al. Unleashing the Potential of Sodium-Ion Batteries: Current State and Future Directions for Sustainable Energy Storage [J]. Advanced Functional Materials, 2023, 33(46). |
5 | HIRSH H S, LI Y X, TAN D H S, et al. Sodium-Ion Batteries Paving the Way for Grid Energy Storage [J]. Advanced Energy Materials, 2020, 10(32). |
6 | LI Y D, CHEN X Q, ZENG Z H, et al. Coal-Based Electrodes for Energy Storage Systems: Development, Challenges, and Prospects [J]. Acs Applied Energy Materials, 2022, 5(6): 7874-88. |
7 | 宋文革 曾, 王斌. 低阶煤基炭材料研究进展 [J]. 新型炭材料(中英文): 1-22. |
8 | PICKEL W, KUS J, FLORES D, et al. Classification of liptinite - ICCP System 1994 [J]. International Journal of Coal Geology, 2017, 169: 40-61. |
9 | INT COMM COAL ORGANIC P. The new inertinite classification (ICCP System 1994) [J]. Fuel, 2001, 80(4): 459-71. |
10 | INT COMMITTEE COAL ORGANIC P. The new vitrinite classification (ICCP System 1994) [J]. Fuel, 1998, 77(5): 349-58. |
11 | SHI L, LIU Q Y, GUO X J, et al. Pyrolysis behavior and bonding information of coal - A TGA study [J]. Fuel Processing Technology, 2013, 108: 125-32. |
12 | 刘振宇. 煤化学的前沿与挑战:结构与反应 [J]. 中国科学:化学, 2014, 44(09): 1431-9. |
13 | LU H Y, SUN S F, XIAO L F, et al. High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries [J]. Acs Applied Energy Materials, 2019, 2(1): 729-35. |
14 | LI Y, HU, Y. S., QI, X., RONG, X., LI, H., HUANG, X. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications [J]. Energy Storage Materials, 2016, 5: 191-7. |
15 | 王博阳, 夏吉利, 董晓玲, et al. 不同变质程度煤衍生硬炭的储钠行为研究 [J]. 化工学报, 2021, 72(11): 5738-50. |
16 | ZENG H-T, KANG W-W, XING B-L, et al. Microstructure modulation of hard carbon derived from long-flame coal to improve electrochemical sodium storage performances [J]. Fuel Processing Technology, 2025, 267: 108159. |
17 | SU M-Y, ZHANG K-Y, ANG E H, et al. Structural regulation of coal-derived hard carbon anode for sodium-ion batteries via pre-oxidation [J]. Rare Metals, 2024, 43(6): 2585-96. |
18 | 郭行 韩, 董晓玲,. 调控炭化过程优化煤基硬炭负极储钠性能 [J]. 化工学报, 2022, 73(4): 17941806. |
19 | DONG S, SONG Y, FANG Y, et al. Rapid Carbonization of Anthracite Coal via Flash Joule Heating for Sodium Ion Storage [J]. ACS Applied Energy Materials, 2024, 7(24): 11288-96. |
20 | LU Y X, ZHAO C L, QI X G, et al. Pre-Oxidation-Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance [J]. Advanced Energy Materials, 2018, 8(27). |
21 | DU Y F, SUN G H, LI Y, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity [J]. Carbon, 2021, 178: 243-55. |
22 | LOU Z J, WANG H, WU D Y, et al. Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage [J]. Fuel, 2022, 310. |
23 | MA R, CHEN Y X, LI Q, et al. Oxygen-driven closing pore formation in coal-based hard carbon for low-voltage rapid sodium storage [J]. Chemical Engineering Journal, 2024, 493. |
24 | SU M Y, ZHANG K Y, ANG E H, et al. Structural regulation of coal-derived hard carbon anode for sodium-ion batteries via pre-oxidation [J]. Rare Metals, 2024, 43(6): 2585-96. |
25 | ZHANG H M, MING H, ZHANG W F, et al. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery [J]. Acs Applied Materials & Interfaces, 2017, 9(28): 23766-74. |
26 | ZHANG H M, ZHANG W F, MING H, et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries [J]. Chemical Engineering Journal, 2018, 341: 280-8. |
27 | XIE F, XU Z, JENSEN A C S, et al. Hard-Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance [J]. Advanced Functional Materials, 2019, 29(24). |
28 | ZHANG H M, ZHANG W F, HUANG F Q. Hard Carbon Microsphere with Expanded Graphitic Interlayers Derived from a Highly Branched Polymer Network as Ultrahigh Performance Anode for Practical Sodium-Ion Batteries [J]. Acs Applied Materials & Interfaces, 2021, 13(51): 61180-8. |
29 | CHEN H, SUN N, ZHU Q Z, et al. Microcrystalline Hybridization Enhanced Coal-Based Carbon Anode for Advanced Sodium-Ion Batteries [J]. Advanced Science, 2022, 9(20). |
30 | ZHOU Z R, WANG Z J, FAN L S. In-situ capture defects through molecule grafting assisted in coal-based hard carbon anode for sodium-ion batteries [J]. Chemical Engineering Journal, 2024, 490. |
31 | ZHOU Z, WANG Z, FAN L. In-situ capture defects through molecule grafting assisted in coal-based hard carbon anode for sodium-ion batteries [J]. Chemical Engineering Journal, 2024, 490: 151428. |
32 | SONG W J, TANG Y K, LIU J M, et al. Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries [J]. Journal of Alloys and Compounds, 2023, 946. |
33 | LI R, YANG B, HU A, et al. Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries [J]. Carbon, 2023, 215: 118489. |
34 | SUN D, LUO B, WANG H Y, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency [J]. Nano Energy, 2019, 64. |
35 | CHEN L, BAI L L, YEO J J, et al. Wood-Derived Carbon with Selectively Introduced C=O Groups toward Stable and High Capacity Anodes for Sodium Storage [J]. Acs Applied Materials & Interfaces, 2020, 12(24): 27499-507. |
36 | DENG W T, CAO Y J, YUAN G M, et al. Realizing Improved Sodium-Ion Storage by Introducing Carbonyl Groups and Closed Micropores into a Biomass-Derived Hard Carbon Anode [J]. Acs Applied Materials & Interfaces, 2021, 13(40): 47728-39. |
37 | XU T Y, QIU X, ZHANG X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance [J]. Chemical Engineering Journal, 2023, 452. |
38 | XIA J L, YAN D, GUO L P, et al. Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium-Ion Storage [J]. Advanced Materials, 2020, 32(21). |
39 | ZHAO H Q, YE J Q, SONG W, et al. Insights into the Surface Oxygen Functional Group-Driven Fast and Stable Sodium Adsorption on Carbon [J]. Acs Applied Materials & Interfaces, 2020, 12(6): 6991-7000. |
40 | SUN F, WANG H, QU Z B, et al. Carboxyl-Dominant Oxygen Rich Carbon for Improved Sodium Ion Storage: Synergistic Enhancement of Adsorption and Intercalation Mechanisms [J]. Advanced Energy Materials, 2021, 11(1). |
41 | CHEN H, SUN N, WANG Y, et al. Microcrystalline Engineering of Anthracite-Based Carbon Via Salt-Assisted Ball Milling for Enhanced Sodium Storage Performance [J]. Small, 2024, n/a(n/a): 2406497. |
42 | QIAN W-Y, ZHOU X-Y, LIU X-Y, et al. Breakage of the dense structure of coal precursors increases the plateau capacity of hard carbon for sodium storage [J]. Chemical Science, 2025, 16(1): 104-12. |
43 | WANG H, SUN F, DONG J, et al. Mechanochemistry transforming high-surface-area coal-based activated carbon into densified carbon with optimized multi-scale structures for enhanced sodium/potassium ion storage [J]. Electrochimica Acta, 2024, 475: 143579. |
44 | GAO X, CHANG G, HUANG C, et al. Mechanochemical regulation of microcrystalline in coal-derived disordered carbon for improved sodium storage: Metamorphic grade [J]. Applied Surface Science, 2024, 658: 159868. |
45 | CHEN H, SUN N, WANG Y X, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries [J]. Energy Storage Materials, 2023, 56: 532-41. |
46 | WANG H, NIU H, SHU K, et al. Regulating the "core-shell" microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode [J]. Journal of Materials Science & Technology, 2025, 209: 161-70. |
47 | HE H N, HE J, YU H B, et al. Dual-Interfering Chemistry for Soft-Hard Carbon Translation toward Fast and Durable Sodium Storage [J]. Advanced Energy Materials, 2023, 13(16). |
48 | AHMADPOUR A, DO D D. The preparation of active carbons from coal by chemical and physical activation [J]. Carbon, 1996, 34(4): 471-9. |
49 | ILLANGOMEZ M J, GARCIAGARCIA A, DELECEA C S M, et al. Activated carbons from Spanish coals.2. Chemical activation [J]. Energy & Fuels, 1996, 10(5): 1108-14. |
50 | WANG K F, SUN F, WANG H, et al. Altering Thermal Transformation Pathway to Create Closed Pores in Coal-Derived Hard Carbon and Boosting of Na<SUP>+</SUP> Plateau Storage for High-Performance Sodium-Ion Battery and Sodium-Ion Capacitor [J]. Advanced Functional Materials, 2022, 32(34). |
51 | GAO S, TANG Y, WANG L, et al. Coal-Based Hierarchical Porous Carbon Synthesized with a Soluble Salt Self-Assembly-Assisted Method for High Performance Supercapacitors and Li-Ion Batteries [J]. Acs Sustainable Chemistry & Engineering, 2018, 6(3): 3255-63. |
52 | WANG J, CUI Y L, GU Y, et al. Coal-Based modified Carbon for High Performance Sodium-Ion Battery [J]. Solid State Ionics, 2021, 368. |
53 | WANG K, QIAN J, SUN F, et al. In-situ catalytic conversion of coal pyrolysis gas to nanoporous carbon rods and superior sodium ion storage performance [J]. Fuel, 2020, 281: 118782. |
54 | WEI S, DENG X, LI W, et al. Recyclable molten-salt-assisted synthesis of N-doped porous carbon nanosheets from coal tar pitch for high performance sodium batteries [J]. Chemical Engineering Journal, 2023, 455: 140540. |
55 | ZHAO G, XU T, ZHAO Y, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries [J]. Energy Storage Materials, 2024, 67: 103282. |
56 | XIAO N, WEI Y, LI H, et al. Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction [J]. Carbon, 2020, 162: 431-7. |
[1] | 乌兰, 杨杰, 耿磊, 胡润, 彭尚龙. 钠离子电池正极表面残余碱转换钠补偿包覆层[J]. 储能科学与技术, 2025, 14(1): 21-29. |
[2] | 要义杰, 张峻伟, 赵燕君, 梁宏成, 赵冬妮. 界面动力学对钠离子电池低温性能的影响[J]. 储能科学与技术, 2025, 14(1): 30-41. |
[3] | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05 @CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. |
[4] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[5] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[6] | 谭仕荣, 尹文骥, 曾翠鸿, 黎小琼, 訚硕, 纪方力, 胡思江, 王红强, 李庆余. 高温淬火对钠离子电池锰基层状正极材料结构和性能的影响[J]. 储能科学与技术, 2024, 13(7): 2399-2406. |
[7] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[8] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[9] | 王立锋, 任乃青, 杨海, 姚雨, 余彦. 低温钠离子电池电解液研究进展[J]. 储能科学与技术, 2024, 13(7): 2206-2223. |
[10] | 李丹, 马铁, 刘汉浩, 郭丽. 高倍率钠离子电池炭包覆纳米铋负极材料[J]. 储能科学与技术, 2024, 13(6): 1775-1785. |
[11] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[12] | 所聪, 王阳峰, 朱紫宸, 杨雁. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
[13] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[14] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[15] | 赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||