储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 2114-2116.doi: 10.19799/j.cnki.2095-4239.2025.0412

• 储能测试与评价 • 上一篇    下一篇

基于大数据和人工智能的储能系统故障预测与诊断方法研究

韩松()   

  1. 中国安全生产科学研究院,北京 100012
  • 收稿日期:2025-04-29 修回日期:2025-05-16 出版日期:2025-05-28 发布日期:2025-05-21
  • 作者简介:韩松(1991—),男,博士,工程师,主要研究方向为人工智能与机器人技术,E-mail:hansongas@126.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(52304262);中国安全生产科学研究院基本科研业务费专项资金项目(2023JBKY06)

Research on fault prediction and diagnosis methods for energy storage systems based on big data and artificial intelligence

Song HAN()   

  1. China Academy of Safety Science and Technology, Beijing 100012, China
  • Received:2025-04-29 Revised:2025-05-16 Online:2025-05-28 Published:2025-05-21

摘要:

储能系统作为电力资源应用与发展的核心,正不断趋于复杂化和精确化,如何提高储能系统故障检测和诊断的精确度成为现代电力技术发展的关键。本文基于现代储能系统常见故障问题,详细阐述了基于大数据和人工智能技术的新型储能系统故障预测方法。通过分析研究可以明确,当前储能系统故障预测诊断方法主要包括数据模型诊断和数据驱动诊断,前者是通过大数据技术构建数据模型,判定问题数据,得出诊断结果,后者则是更多依赖于机器学习等人工智能技术,通过知识驱动和数据驱动获取诊断结果。未来的研究更多倾向于物理量数据的挖掘归纳,建立更精确的对比模型,实现储能系统故障的快速诊断。

关键词: 大数据, 人工智能, 故障预测

Abstract:

As the core of power resource application and development, energy storage systems are constantly becoming more complex and precise. How to improve the accuracy of energy storage system fault detection and diagnosis has become the key to the development of modern power technology. The article provides a detailed overview of new energy storage system fault prediction methods based on big data and artificial intelligence technology, based on common faults in modern energy storage systems. Through analysis and research, it can be clarified that the current fault prediction and diagnosis methods for energy storage systems mainly include data model diagnosis and data-driven diagnosis. The former constructs data models through big data technology, determines problem data, and obtains diagnostic results, while the latter relies more on artificial intelligence technologies such as machine learning to obtain diagnostic results through knowledge driven and data-driven approaches. Future research tends to focus more on mining and summarizing physical quantity data, establishing more accurate comparative models, and achieving rapid diagnosis of energy storage system faults.

Key words: big data, artificial intelligence, fault prediction

中图分类号: