储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 2106-2113.doi: 10.19799/j.cnki.2095-4239.2024.1058

• 储能测试与评价 • 上一篇    下一篇

基于改进卡尔曼算法的电池采样电压滤波估计

宋海飞(), 王乐红(), 原义栋, 赵天挺, 陈捷   

  1. 北京智芯微电子科技有限公司,北京 102299
  • 收稿日期:2024-11-11 修回日期:2024-12-03 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 王乐红 E-mail:songhaifei@sgchip.sgcc.com.cn;wlh16@tsinghua.org.cn
  • 作者简介:宋海飞(1984—),男,硕士,高级工程师,研究方向为电池管理系统,E-mail:songhaifei@sgchip.sgcc.com.cn
  • 基金资助:
    国家重点研发计划项目(2440STCZB2590)

Battery sampling voltage filtering and estimation based on improved Kalman filter algorithm

Haifei SONG(), Lehong WANG(), Yidong YUAN, Tianting ZHAO, Jie CHEN   

  1. Beijing Smartchip Microelectronics Technology Company Limited, Beijing 102299, China
  • Received:2024-11-11 Revised:2024-12-03 Online:2025-05-28 Published:2025-05-21
  • Contact: Lehong WANG E-mail:songhaifei@sgchip.sgcc.com.cn;wlh16@tsinghua.org.cn

摘要:

准确地获取锂离子电池电压对于提高电池状态管理可靠性至关重要。针对传统卡尔曼滤波算法中卡尔曼增益无法反映新息突变的影响,状态变量估计更新不能利用历史数据中的有用信息,导致基于传统卡尔曼算法采样电压滤波估计结果不理想的问题,提出一种基于多新息理论改进卡尔曼滤波算法的电池采样电压滤波估计方法。通过运用多新息理论思想,将单一时刻的新息状态改进为多元新息矩阵,在对系统误差协方差进行计算的过程中,引入了当前和历史时刻观测量多元新息矩阵;在先验估计修正过程中,增加了历史时刻的状态量及卡尔曼增益和观测量新息矩阵,对传统卡尔曼滤波算法的误差协方差和系统状态变量的先验估计修正计算过程进行了改进,使得卡尔曼增益和状态变量的估计值能够随着不同时刻新息的变化进行调整;同时还引入了修正因子,调整不同时刻数据的修正权重,构建基于多新息理论改进卡尔曼滤波算法,克服了传统卡尔曼滤波算法中卡尔曼增益无法反映新息突变和遗漏历史数据信息带来的影响,实现电池采样电压的精确估计。将基于改进算法和传统算法滤波估计的采样电压进行对比分析,并利用电压与荷电状态(SOC)之间的关系计算电池SOC。结果表明,在恒流放电工况下,电池采样电压最大误差由8.09 mV降为3.71 mV,基于采样电压计算的SOC误差也进一步降低。同时,改进后的方法使得采样电压和SOC的平均误差和均方根误差(RMSE)均有所减小,验证了改进卡尔曼滤波算法的有效性,为提高电池采样电压的滤波估计精度和SOC的计算精度提供了新的思路。

关键词: 锂离子电池, 采样电压, 多新息理论, 卡尔曼滤波算法, 荷电状态(SOC)

Abstract:

Accurately measuring the voltage of lithium-ion batteries is crucial for improving the reliability of battery state management. Traditional Kalman filter algorithms face limitations, as the Kalman gain does not account for sudden innovation changes, and the state variable estimation process ignores valuable historical data. This leads to unsatisfactory results in the estimation of sampled voltage filtering based on the traditional Kalman algorithm. Therefore, a sampling voltage estimation method based on an improved Kalman filter algorithm incorporating multi-innovation theory has been proposed. This approach extends the single-moment innovation to a multivariate innovation matrix, incorporating information from both current and historical observations. During the system error covariance calculation, the multivariate innovation matrix of current and past observation moments is introduced. For prior estimation corrections, historical state variables, Kalman gains, and the observation moment innovation matrix are added into the process. These improvements refine the traditional algorithm's error covariance and estimation correction procedures, enabling the Kalman gain and state variable estimates to adapt dynamically to changes in innovation. At the same time, a correction factor is introduced to adjust the correction weight of data at different moments. The improved Kalman filter algorithm based on multi-innovation theory is constructed, resolving key limitations of the traditional method by accounting for sudden innovation changes and incorporating historical data. A comparative analysis was performed between the sampled voltage estimated by the improved algorithm and the traditional algorithm. Furthermore, the relationship between voltage and state of charge (SOC) is utilized to calculate the battery SOC. The results show that under constant current discharge conditions, the maximum error of battery sampled voltage decreases from 8.09 mV to 3.71 mV. Moreover, the SOC error calculated using the sampled voltage is significantly reduced. The improved method reduces the average error and root mean square error (RMSE) for sampled voltage and SOC. These results validate the effectiveness of the improved Kalman filter algorithm and provide new ideas for improving the accuracy of battery sampled voltage filtering estimation and SOC calculation.

Key words: Li-ion battery, sampling voltage, multi-innovation theory, Kalman filter algorithm, state of charge(SOC)

中图分类号: