1 |
翟智, 王福金, 邸一, 等. 基于分层对齐迁移学习的锂离子电池容量估计[J]. 储能科学与技术, 2023, 12(4): 1223-1233. DOI: 10.19799/j.cnki.2095-4239.2022.0706.
|
|
ZHAI Z, WANG F J, DI Y, et al. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation[J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233. DOI: 10.19799/j.cnki.2095-4239.2022.0706.
|
2 |
李根, 刘珊珊. 基于大数据和人工智能的储能系统故障预测与诊断方法研究[J]. 储能科学与技术, 2024, 13(10): 3653-3655. DOI: 10.19799/j.cnki.2095-4239.2024.0902.
|
|
LI G, LIU S S. Research on fault prediction and diagnosis methods of energy storage system based on big data and artificial intelligence[J]. Energy Storage Science and Technology, 2024, 13(10): 3653-3655. DOI: 10.19799/j.cnki.2095-4239.2024. 0902.
|
3 |
来鑫, 陈权威, 顾黄辉, 等. 面向"双碳" 战略目标的锂离子电池生命周期评价: 框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003.
|
|
LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003.
|
4 |
赵丽香, 何鹏林, 王晓冬, 等. 从标准化看锂离子电池安全准入与监管趋势[J]. 电池, 2023, 53(5): 471-476. DOI: 10.19535/j.1001-1579.2023.05.001.
|
|
ZHAO L X, HE P L, WANG X D, et al. Trend of Li-ion battery safety access and supervision from standardization[J]. Battery Bimonthly, 2023, 53(5): 471-476. DOI: 10.19535/j.1001-1579. 2023.05.001.
|
5 |
LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. DOI: 10.1016/j.joule.2018.06.015.
|
6 |
许利君, 许利红, 宋方宇轩. 电化学储能电站的系统故障监测与诊断分析[J]. 储能科学与技术, 2024, 13(8): 2788-2790. DOI: 10.19799/j.cnki.2095-4239.2024.0689.
|
|
XU L J, XU L H, SONG F. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations[J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. DOI: 10.19799/j.cnki.2095-4239.2024.0689.
|
7 |
王君瑞, 吴新举, 赵东琦, 等. 基于WOA-VMD与PSO-SVM的锂离子电池内短路故障诊断方法[J]. 工程科学学报, 2023, 45(12): 2162-2172. DOI: 10.13374/j.issn2095-9389.2022.10.04.004.
|
|
WANG J R, WU X J, ZHAO D Q, et al. Research on internal short-circuit fault diagnosis methods for lithium-ion batteries based on WOA-VMD and PSO-SVM[J]. Chinese Journal of Engineering, 2023, 45(12): 2162-2172. DOI: 10.13374/j.issn2095-9389.2022.10.04.004.
|
8 |
刘文霞, 王荣杰, 刘鑫, 等. 柔性配电系统故障区间鲁棒优化恢复[J]. 中国电机工程学报, 2020, 40(12): 3897-3907. DOI: 10.13334/j. 0258-8013.pcsee.190407.
|
|
LIU W X, WANG R J, LIU X, et al. Interval robust optimal recovery of faults in flexible distribution systems[J]. Proceedings of the CSEE, 2020, 40(12): 3897-3907. DOI: 10.13334/j.0258-8013.pcsee.190407.
|
9 |
李斌, 刘斌, 李超. 新型电力系统下锂离子储能电站热安全管理技术综述[J]. 新型电力系统, 2024(2): 126-139. DOI: 10.20121/j.2097-2784.ntps.240014.
|
|
LI B, LIU B, LI C. A review of thermal safety management techniques for lithium-ion energy storage power stations under new power systems[J]. New Type Power Systems, 2024(2): 126-139. DOI: 10.20121/j.2097-2784.ntps.240014.
|
10 |
王学军, 刘速, 乔祥祺, 等. 锂离子电池储能系统安全与标准研究进展[J]. 浙江化工, 2023, 54(10): 8-15. DOI: 10.3969/j.issn.1006-4184.2023.10.002.
|
|
WANG X J, LIU S, QIAO X Q, et al. Research progress on safety and standards of lithium-ion battery energy storage system[J]. Zhejiang Chemical Industry, 2023, 54(10): 8-15. DOI: 10.3969/j.issn.1006-4184.2023.10.002.
|
11 |
赵立军, 李文一. 基于MAX11068的大功率锂电池管理系统[J]. 电源技术, 2016, 40(11): 2144-2147.
|
|
ZHAO L J, LI W Y. Design of high power Li-ion battery management system based on MAX11068[J]. Chinese Journal of Power Sources, 2016, 40(11): 2144-2147.
|
12 |
李宝银, 吴宏亮, 龚子豪. 考虑电压采集电磁信号干扰的氧化锌避雷器在线监测[J]. 高压电器, 2024, 60(2): 156-162. DOI: 10.13296/j. 1001-1609.hva.2024.02.016.
|
|
LI B Y, WU H L, GONG Z H. On-line monitoring of zinc oxide arrester considering electromagnetic signal interference in voltage acquisition[J]. High Voltage Apparatus, 2024, 60(2): 156-162. DOI: 10.13296/j.1001-1609.hva.2024.02.016.
|
13 |
黄凤荣, 羿博珩, 王旭, 等. 基于深度学习与运动状态识别的车辆惯性导航方法[J]. 中国惯性技术学报, 2022, 30(5): 569-575. DOI: 10. 13695/j.cnki.12-1222/o3.2022.05.002.
|
|
HUANG F R, YI B H, WANG X, et al. Vehicle inertial navigation method based on deep learning and motion constraints[J]. Journal of Chinese Inertial Technology, 2022, 30(5): 569-575. DOI: 10.13695/j.cnki.12-1222/o3.2022.05.002.
|
14 |
巫春玲, 郑克军, 徐先峰, 等. 基于自适应插值强跟踪扩展卡尔曼滤波的电力系统动态状态估计研究[J]. 电网技术, 2023, 47(5): 2078-2091. DOI: 10.13335/j.1000-3673.pst.2022.1155.
|
|
WU C L, ZHENG K J, XU X F, et al. Dynamic state estimation of power system based on adaptive interpolation strong tracking extended Kalman filter[J]. Power System Technology, 2023, 47(5): 2078-2091. DOI: 10.13335/j.1000-3673.pst.2022.1155.
|
15 |
汪晋安, 许建中. 分布式储能型MMC电池荷电状态均衡优化控制策略[J]. 电力自动化设备, 2023, 43(7): 44-50. DOI: 10.16081/j.epae. 202212019.
|
|
WANG J A, XU J Z. SOC balancing optimal control strategy amongst batteries in MMC-DES[J]. Electric Power Automation Equipment, 2023, 43(7): 44-50. DOI: 10.16081/j.epae.202212019.
|
16 |
陈蕾, 王顺利, 张丽, 等. 一种基于卡尔曼的锂电池电压采样滤波方法[J]. 化工自动化及仪表, 2018, 45(7): 564-566.
|
|
CHEN L, WANG S L, ZHANG L, et al. Voltage sampling and filtering method for lithium battery based on Kalman filtering algorithm[J]. Control and Instruments in Chemical Industry, 2018, 45(7): 564-566.
|
17 |
GU I Y, STYVAKTAKIS E. Bridge the gap: Signal processing for power quality applications[J]. Electric Power Systems Research, 2003, 66(1): 83-96. DOI: 10.1016/S0378-7796(03)00074-9.
|
18 |
杨磊, 施火泉, 邹嘉丰. 基于改进卡尔曼滤波器的谐波检测方法[J]. 电子测量技术, 2017, 40(1): 81-85. DOI: 10.19651/j.cnki.emt. 2017.01.017.
|
|
YANG L, SHI H Q, ZOU J F. Harmonic detection method based on improved Calman filter[J]. Electronic Measurement Technology, 2017, 40(1): 81-85. DOI: 10.19651/j.cnki.emt. 2017.01.017.
|
19 |
王可. 基于快速S变换和卡尔曼滤波算法的电能质量分析系统研究[D]. 武汉: 华中科技大学, 2015.
|
|
WANG K. Research on power quality analysis system based on fast S-transform and Kalman filter algorithm[D]. Wuhan: Huazhong University of Science and Technology, 2015.
|
20 |
卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识[J]. 电力系统自动化, 2019, 43(15): 139-145.
|
|
WEI Z N, YUAN K K, CHENG L X, et al. Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J]. Automation of Electric Power Systems, 2019, 43(15): 139-145.
|