储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 2942-2949.doi: 10.19799/j.cnki.2095-4239.2025.0485

• 短时高频高功率储能专辑 • 上一篇    

超高功率锂离子电池脉冲性能研究

高蕾(), 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘()   

  1. 空间电源技术国家重点实验室,上海空间电源研究所,上海 200245
  • 收稿日期:2025-05-26 修回日期:2025-06-16 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 顾梅嵘 E-mail:59637669@qq.com;270343738@qq.com
  • 作者简介:高蕾(1976—),女,硕士,研究员,研究方向为锂离子电池技术,E-mail:59637669@qq.com

Research on ultra high power lithium-ion battery pulse discharge performance

Lei GAO(), Honghui GU, Yiming ZHANG, Wei HUANG, Haiyan LU, Lin ZHOU, Meirong GU()   

  1. State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power Sources, Shanghai 200245, China
  • Received:2025-05-26 Revised:2025-06-16 Online:2025-08-28 Published:2025-08-18
  • Contact: Meirong GU E-mail:59637669@qq.com;270343738@qq.com

摘要:

针对某些特殊应用场景对百C级超高倍率脉冲放电性能的需求,短时高频高功率储能技术成为解决特种能源问题的关键。本工作从隔膜、导电剂、集流引出结构设计、混料工艺、负极复合体系等多维度展开研究,降低锂离子电池在超高倍率脉冲放电工况下的欧姆极化,实现脉冲放电初期电池的快速响应。研究发现:高孔隙率湿法隔膜可以兼顾湿法基膜的高机械强度与干法基膜的快离子传输特性;气相生长碳纤维的瞬时导电响应较碳纳米管更迅速;在负极体系优化中,硬碳/石墨复合体系和SiO2/石墨复合体系的性能相反——前者表现出优异的极化抑制能力(150 C脉冲平台提升0.1 V),但是影响比能量发挥,后者的优势在于减薄负极19.4%,提升了4%的比能量,脉冲倍率性能却有所减弱;混料工艺对比发现,不同的混料方式对于高导电剂含量的超薄电极的电池功率性能没有明显区别;对比了两种集流端子引出方式,结果发现两侧引流的电子路径和均一性优于顶部引流,更有利于减小欧姆压降。基于上述研究研制的超高功率锂离子电池,150 C@1 s脉冲放电平台维持在3.4 V以上。

关键词: 超高功率脉冲, 锂离子电池, 欧姆极化

Abstract:

To satisfy the demand for ultra-high-rate pulse discharge performance (over 100 C) in special applications, short-duration, high-frequency power storage technology has become crucial for resolving specific power supply challenges. This study investigated multidimensional optimization approaches, including separator selection, conductive additive comparison, current collector design, slurry mixing processes, and anode composite systems, to reduce ohmic polarization in lithium-ion batteries under ultra-high-rate pulse discharge conditions and achieve rapid response during the initial stage of pulse discharge. It was found that high-porosity wet-process separators can combine the high mechanical strength of wet-process base membranes with the fast ion transport characteristics of dry-process membranes. Vapor-grown carbon fiber demonstrated a faster response to high-rate discharge compared to carbon nanotubes. In anode system optimization, hard carbon/graphite and SiO2/graphite composites exhibited contrasting performance: the former showed superior polarization suppression (with a 0.1 V increase in the 150 C pulse plateau) at the expense of energy density, while the latter enabled 19.4% electrode thinning and a 4% energy density improvement, albeit with reduced pulse rate capability. A comparison of mixing processes revealed that different mixing methods showed no significant difference in the power performance of batteries with ultra-thin electrodes containing a high content of conductive additives. Analysis of different current collector terminal designs indicated that a dual-side terminal design provided shorter and more uniform electron transport pathways than a top-terminal design, effectively mitigating ohmic voltage drop. The developed ultra-high-power battery maintained a discharge plateau of 3.4 V at 150 C (1 s pulse).

Key words: ultra high rate pulse discharge, Li-ion power battery, ohmic polarization

中图分类号: