储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2884-2902.doi: 10.19799/j.cnki.2095-4239.2025.0586
• 热点点评 • 上一篇
郝峻丰1(), 朱璟1, 岑官骏1, 乔荣涵1, 张新新1, 孙蔷馥1, 田孟羽1, 金周1, 詹元杰1, 闫勇1, 贲留斌1, 俞海龙1, 刘燕燕1, 周洪2, 黄学杰1(
)
收稿日期:
2025-06-24
出版日期:
2025-07-28
发布日期:
2025-07-11
通讯作者:
黄学杰
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
郝峻丰(1999—),男,博士研究生,研究方向为锂离子电池,E-mail:haojunfeng21@mails.ucas.ac.cn;
Junfeng HAO1(), Jing ZHU1, Guanjun CEN1, Ronghan QIAO1, Xinxin ZHANG1, Qiangfu SUN1, Mengyu TIAN1, Zhou JIN1, Yuanjie ZHAN1, Yong YAN1, Liubin BEN1, Hailong YU1, Yanyan LIU1, Hong ZHOU2, Xuejie HUANG1(
)
Received:
2025-06-24
Online:
2025-07-28
Published:
2025-07-11
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年4月1日至2025年5月31日上线的锂电池研究论文,共有4922篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变。合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变化,维持电极完整性。固态电解质的研究主要包括对现有固态电解质的合成、掺杂、结构设计、稳定性和相关性能研究以及对新型固态电解质的探索。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注于复合正极设计、界面改性和影响锂枝晶生长的因素,出现了更多关于固态锂硫电池的研究论文。液体电解质电池技术偏重复合锂硫正极、锂硫电池 “穿梭效应”的抑制、新电极制备技术以及锂界面枝晶及副反应抑制等。还有多篇关于电极材料和电解质的表征和理论模拟工作。
中图分类号:
郝峻丰, 朱璟, 岑官骏, 乔荣涵, 张新新, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.04.01—2025.05.31)[J]. 储能科学与技术, 2025, 14(7): 2884-2902.
Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2025 to May 31 2025)[J]. Energy Storage Science and Technology, 2025, 14(7): 2884-2902.
[1] | WANG B, LI K, XU G, et al. Mechanically and chemically co-robust Ni-rich cathodes with ultrahigh capacity and prolonged cycle life[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202502725. |
[2] | CHEN X Y, SU J, LIU W Z, et al. Direct regeneration of degraded high-nickel layered cathode with a grain-growth inhibitor by epitaxial boundaries[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202503261. |
[3] | WANG S, LIANG K, ZHAO H, et al. Electronic structure formed by Y2O3-doping in lithium position assists improvement of charging-voltage for high-nickel cathodes[J]. Nature Communications, 2025, 16(1): https://doi.org/10.1038/s41467-024-52768-7. |
[4] | LI J X, LIANG G M, ZHENG W, et al. Structure flexibility enabled by surface high-concentration titanium doping for durable lithium-ion battery cathodes[J]. Journal of the American Chemical Society, 2025, 147(22): 18606-18617. DOI: 10.1021/jacs.5c00789. |
[5] | ALI AHMED S, AGNIHOTRI T, RANJAN A, et al. Boosting stability in Ni-rich cathodes: A synergistic approach to surface and bulk modifications for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A, 2025, 13(20): 14846-14857. DOI: 10.1039/D4TA08834D. |
[6] | PARK N Y, LEE H U, YU T Y, et al. High-energy, long-life Ni-rich cathode materials with columnar structures for all-solid-state batteries[J]. Nature Energy, 2025, 10(4): 479-489. DOI: 10.1038/s41560-025-01726-8. |
[7] | HU X X, DANGWAL S, WANG X C, et al. Superior electrochemical performance of zinc-ion batteries with fine-grained and textured zinc anode produced by high-pressure torsion[J]. Materials Science and Engineering: B, 2025, 317: 118252. DOI: 10.1016/j.mseb.2025.118252. |
[8] | SUN H B, YANG Z J, GHOSH R, et al. Thermal processing to modulate surface chemistry and bulk charge distribution in nickel-rich layered lithium positive electrodes[J]. Nature Communications, 2025, 16: 1478. DOI: 10.1038/s41467-025-56075-7. |
[9] | CHEN Y F, ZHU H T, ZHOU M Y, et al. Accurate determination of reaction rate constants for lithium-ion batteries by characteristic time-decomposed overpotential[J]. Journal of Energy Chemistry, 2025, 106: 608-618. DOI: 10.1016/j.jechem.2025.03.012. |
[10] | CUI Z H, LIU C, WANG F, et al. Navigating thermal stability intricacies of high-nickel cathodes for high-energy lithium batteries[J]. Nature Energy, 2025, 10(4): 490-501. DOI: 10.1038/s41560-025-01731-x. |
[11] | DEMUTH T, KURZHALS P, AHMED S, et al. Effect of a two-step temperature-swing synthesis on coarse-grained LiNiO2 secondary particles characterized by scanning transmission electron microscopy[J]. Chemistry of Materials, 2025, 37(11): 3993-4004. DOI: 10. 1021/acs.chemmater.5c00108. |
[12] | LIU Y, XIN Y, HE B J, et al. High-rate rare-earth-based high-entropy co-free high-Ni cathodes for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2025, 13(18): 12957-12967. DOI: 10.1039/D5TA00576K. |
[13] | ZHAO W G, LI M Y, LI Z J, et al. Stabilizing surface lattice On – (0 n 2) for long-term durability of LiCoO2[J]. Angewandte Chemie International Edition, 2025, 64(23): DOI: 10.1002/anie.202503100. |
[14] | SHIN H, NDUKWE A, KIM T, et al. Mitigating diffusion-induced intragranular cracking in single-crystal LiNi0.5Mn1.5O4 via extended solid-solution behavior[J]. Angewandte Chemie International Edition, 2025, 64(16): DOI: 10.1002/anie.2024 22726. |
[15] | DUAN J, CHEN F, YU H J, et al. π-bridge-linked ionic covalent organic framework with fast reaction kinetics for high-rate-capacity lithium-ion batteries[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.2025 05207. |
[16] | QIAO H H, XIE Z W, ZHU X D, et al. Molecular structure regulation elicits steric hindrance of ketone additives with high adsorbability for oriented deposition of Zn anode[J]. Small, 2025, DOI: 10.1002/smll.202502564. |
[17] | CHOI S, CHAE S, KIM T, et al. Strategic surface engineering of lithium metal anodes: Simultaneous native layer elimination and protective layer formation via gas-solid reaction[J]. ACS Nano, 2025, 19(16): 16119-16132. DOI: 10.1021/acsnano.5c03708. |
[18] | BHATTACHARYA D, REESE C W, BOBEL A, et al. Mechanical performance of lithium metal anodes manufactured using two-dimensional and three-dimensional current collectors[J]. Journal of Materials Research, 2025, 40(8): 1201-1212. DOI: 10.1557/s43578-025-01570-2. |
[19] | SIM H T, UNIVERSITY H, OH M K, et al. Surface-modified lithium enabling high-performance all-solid-state lithium metal batteries[J]. ACS Energy Letters, 2025, 10(5): 2277-2284. DOI: 10.1021/acsenergylett.5c00656. |
[20] | ZHANG X X, YU H L, BEN L B, et al. Topology fortified anodes powered high-energy all-solid-state lithium batteries[J]. Advanced Materials, 2025, DOI: 10.1002/adma.2025 06298. |
[21] | HUANG C H, YANG X L, GONG S Q, et al. Hierarchical-structured RGO@EGaIn composites as advanced self-healing anode for room-temperature liquid metal battery[J]. Advanced Materials, 2025, 37(14): 2419060. DOI: 10.1002/adma.2024 19060. |
[22] | SONG Y, CHO S, KIM S, et al. Comprehensive Si anode design for sulfide-based all-solid-state batteries: Insights into Si-electrolyte synergy for mitigating contact loss[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202504739. |
[23] | CAO J Q, SHI Y S, MUHTAR D, et al. Topological Li-SbF3@Cu alloying anode for high-energy-density Li metal batteries[J]. Advanced Materials, 2025, DOI: 10.1002/adma.202501811. |
[24] | JEONG J, KIM D, KIM M, et al. Metal-ion-crosstalk-suppressing gel polymer electrolytes for high-voltage Li-ion batteries[J]. Journal of Power Sources, 2025, 641: 236849. DOI: 10.1016/j.jpowsour.2025.236849. |
[25] | ARMAND M, GRUGEON S, CASTRESANA K G, et al. Poly(vinyl butyrate) esters as stable polymer matrix for solid-state li-metal batteries[J]. Acs Energy Letters, 2025, 10(1): 579-587. |
[26] | SONG Y, QU H T, LAO Z J, et al. Creating vacancy strong interaction to enable homogeneous high-throughput ion transport for efficient solid-state lithium batteries[J]. Advanced Materials, 2025, 37(18): 2419271. DOI: 10.1002/adma.202419271. |
[27] | ZHU Q N, YANG K, CHEN L K, et al. Activating interfacial ion exchange in composite electrolytes to realize high-rate and long-cycling solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, 64(23): e202425221. DOI: 10.1002/anie.202425221. |
[28] | LIU S H, TIAN W S, SHEN J Q, et al. Bioinspired gel polymer electrolyte for wide temperature lithium metal battery[J]. Nature Communications, 2025, 16: 2474. DOI: 10.1038/s41467-025-57856-w. |
[29] | GOU J R, CUI K X, WANG S Q, et al. An anisotropic strategy for developing polymer electrolytes endowing lithium metal batteries with electrochemo-mechanically stable interface[J]. Nature Communications, 2025, 16: 3626. DOI: 10.1038/s41467-025-58916-x. |
[30] | CHENG X R, LU C H, GONG X C, et al. Quasi-solid fiber-shaped lithium-ion batteries with fire resistance[J]. Angewandte Chemie International Edition, 2025, 64(16): e202423419. DOI: 10.1002/anie.202423419. |
[31] | DING M F, PENG Y, TONG J J, et al. In situ fabricated non-flammable gel polymer electrolyte with stable interfacial compatibility for safer lithium-ion batteries[J]. Small, 2025, 21(15): 2410961. DOI: 10.1002/smll.202410961. |
[32] | CHEN D J, CHEN W, ZHANG B W, et al. High partial molar volume polymer electrolyte for upgraded lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(25): e202500896. DOI: 10.1002/anie.202500896. |
[33] | HUANG J, QIU B, XU F, et al. Steric hindrance manipulation in polymer electrolytes toward wide-temperature solid-state lithium metal batteries[J]. Acs Energy Letters, 2025, 10(4): 1921-1930. DOI: 10.1021/acsenergylett.4c03602. |
[34] | LIAO Y L, WANG X L, YUAN H, et al. Ultrafast Li-rich transport in composite solid-state electrolytes[J]. Advanced Materials, 2025, 37(10): 2419782. DOI: 10.1002/adma.202419782. |
[35] | QU Y P, SU C, WANG L, et al. Interface engineered electrolyte design strategy for ultralong-cycle solid-state lithium batteries over wide temperature range[J]. Angewandte Chemie International Edition, 2025. DOI: 10.1002/anie.202506731. |
[36] | WANG C Y, LI Z K, MIAO Z K, et al. A soluble precursor facilitates ultra-fast synthesis of O3 layered oxides for sodium-ion batteries[J]. Science China Materials, 2025, 68(6): 1967-1973. DOI: 10.1007/s40843-025-3334-5. |
[37] | WAN L, NIE H Y, YU Q H, et al. Design of ultrafast lithium ion channel for solid-state lithium metal batteries by in situ polymerization induced phase separation[J]. Chemical Engineering Journal, 2025, 513: 162810. DOI: 10.1016/j.cej.2025.162810. |
[38] | HOLMES S E, UNIVERSITY S, KONDEK J, et al. LiI-modified glass-ceramic lithium thioborate: From fundamentals to applications in solid-state batteries[J]. Chemistry of Materials, 2025, 37(7): 2642-2649. DOI: 10.1021/acs.chemmater.5c00224. |
[39] | HONG B L, GAO L, LI C P, et al. All-solid-state batteries designed for operation under extreme cold conditions[J]. Nature Communications, 2025, 16: 143. DOI: 10.1038/s41467-024-55154-5. |
[40] | NIE Y H, LUO D, YANG T Z, et al. Ultrathin electrolyte membranes with reinforced concrete structure for fast-charging solid-state lithium metal batteries[J]. Advanced Materials, 2025. DOI: 10.1002/adma.202504092. |
[41] | KWON G, GWON H, BAE Y, et al. Disorder-driven sintering-free garnet-type solid electrolytes[J]. Nature Communications, 2025, 16: 3256. DOI: 10.1038/s41467-025-58108-7. |
[42] | KIM M, MOON H, KIM S, et al. Tunable solvation structures for fast charging of micron-Si anodes in energy-dense lithium-ion batteries[J]. Chemical Engineering Journal, 2025, 511: 162079. DOI: 10.1016/j.cej.2025.162079. |
[43] | YANG W, LI S W, LIU Y, et al. Selective interfacial polymerization improves reversibility of Si anodes[J]. Chemical Engineering Journal, 2025, 514: 163168. DOI: 10.1016/j.cej.2025.163168. |
[44] | YANG J C, WANG S C, SONG S Y, et al. Cyclable micron-sized silicon-based lithium-ion batteries at -40 ℃ enabled by temperature-dependent solvation regulation[J]. Advanced Materials, 2025: e2501807. DOI: 10.1002/adma.202501807. |
[45] | XIAO Z X, WU S Y, REN X Z, et al. Superior high-rate Ni-rich lithium batteries based on fast ion-desolvation and stable solid-electrolyte interphase[J]. Advanced Science, 2025, 12(12): 2413419. DOI: 10.1002/advs.202413419. |
[46] | CHEN B, CAO T Y, UNIVERSITY F, et al. Rational design of yolk-shell Fe7S8@C-N for high rate and long cycle Li-ion batteries[J]. Nano Letters, 2025: acs.nanolett.5c00404. DOI: 10.1021/acs.nanolett.5c00404. |
[47] | ZHANG A P, BI Z H, YANG E D, et al. Formulating electrophilic electrolyte for in situ stabilization of 4.8 V Li-rich batteries with 100% initial coulombic efficiency[J]. Angewandte Chemie International Edition, 2025, 64(21): e202502603. DOI: 10.1002/anie.202502603. |
[48] | YIN X K, LI B Y, LIU H, et al. Solvent-derived organic-rich SEI enables capacity enhancement for low-temperature lithium metal batteries[J]. Joule, 2025, 9(4): 101823. DOI: 10.1016/j.joule. 2025.101823. |
[49] | JIA H, BROEKHUIS B, XU Y B, et al. Rational electrolyte design for elevated-temperature and thermally stable lithium-ion batteries with nickel-rich cathodes[J]. ACS Applied Materials & Interfaces, 2025, 17(4): 6260-6270. DOI: 10.1021/acsami.4c17629. |
[50] | LEE S, LEE H, CHANG H J, et al. Ester-guided dynamic Li+ solvation enables plating-less, fast-charging Li-ion batteries[J]. ACS Nano, 2025, 19(16): 15789-15802. DOI: 10.1021/acsnano. 5c00027. |
[51] | LI C R, ZHOU N, TANG J X, et al. The interaction of ether-based functionalized ionic liquids in lithium-sulfur batteries: A first-principles study[J]. ChemPhysChem, 2025, 26(12): e202400848. DOI: 10.1002/cphc.202400848. |
[52] | CHO W J, LEE S, KULKARNI U, et al. Significant suppression of exothermic heat flow in silicon anodes via in situ polymerization of phosphonium ionic liquids[J]. Journal of Materials Chemistry A, 2025, 13(7): 5213-5219. DOI: 10.1039/D4TA07578A. |
[53] | LI L Q, et al. 2, 4, 6-tris(4-fluorophenyl)cyclo-boroxine as an electrolytes additive to form ultrathin CEI interfacial membrane for improved high-voltage LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries[J]. ACS Applied Energy Materials, 2025, 8(7): 4200-4210. DOI: 10.1021/acsaem.4c03034. |
[54] | CHEN X L, YU Z L, LI X J, et al. Multifunctional siloxane additive enabling ultrahigh-nickel lithium battery with long cycle life at 30 and 60 ℃[J]. Small, 2025, 21(7): 2409586. DOI: 10.1002/smll. 202409586. |
[55] | YAO Z Q, FU T J, PAN T, et al. Dynamic doping and interphase stabilization for cobalt-free and high-voltage Lithium metal batteries[J]. Nature Communications, 2025, 16: 2791. DOI: 10.1038/s41467-025-58110-z. |
[56] | ZHANG W L, LU Y, FENG Q Q, et al. Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures[J]. Nature Communications, 2025, 16(1): 3344. DOI: 10.1038/s41467-025-58627-3. |
[57] | XU Q S, LI T, JU Z J, et al. Li2ZrF6-based electrolytes for durable lithium metal batteries[J]. Nature, 2025, 637(8045): 339-346. DOI: 10.1038/s41586-024-08294-z. |
[58] | MIN J, BAK S M, ZHANG Y X, et al. Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries[J]. Nature Nanotechnology, 2025, 20(6): 787-797. DOI: 10.1038/s41565-025-01885-5. |
[59] | KIM D, NOH S, HA Y, et al. Efficient fabrication of high-capacity silicon composite anodes for all-solid-state lithium-ion batteries[J]. Acs Materials Letters, 2025, 7(4): 1211-1218. DOI: 10.1021/acsmaterialslett.5c00068. |
[60] | WANG C C, LIU Y, JEONG W J, et al. The influence of pressure on lithium dealloying in solid-state and liquid electrolyte batteries[J]. Nature Materials, 2025, 24(6): 907-916. DOI: 10.1038/s41563-025-02198-7. |
[61] | QIN X, ZHAO L, HAN J W, et al. Self-pressure silicon-carbon anodes for low-external-pressure solid-state Li-ion batteries[J]. ACS Nano, 2025, 19(18): 17760-17773. DOI: 10.1021/acsnano. 5c03017. |
[62] | LIU J H, WANG L N, CHENG Y, et al. Modulating the spatio-temporal sequence of lithium plating and stripping via a 3D host for solid state batteries[J]. Advanced Materials, 2025, 37(20): 2418720. DOI: 10.1002/adma.202418720. |
[63] | REN S Y, SU Y, JIANG W N, et al. Influence of free space on lithium growth behavior at open surfaces and internal cracks of sulfide-based solid electrolyte[J]. Advanced Materials, 2025, 37(10): 2414239. DOI: 10.1002/adma.202414239. |
[64] | RAFIQUE A, FALLARINO L, ACCARDO G, et al. Interfacial analysis of in situ anode formation in solid-state batteries with nanometric current collector[J]. Chemical Engineering Journal, 2025, 509: 160956. DOI: 10.1016/j.cej.2025.160956. |
[65] | WANG H, DENG N P, WANG Y L, et al. Research progress and challenges of high-performance solid-state lithium sulfur batteries: Cathodes, electrolytes, and anodes[J]. Small, 2025, 21(15): e2411452. DOI: 10.1002/smll.202411452. |
[66] | JIAO X, TAN L, TANG X X, et al. A 405 Wh·kg-1 Ah-level lithium-sulfur pouch battery stabilized over 200 cycles by an electron-triode-like GeS2-NiS2 heterostructure[J]. Energy & Environmental Science, 2025, 18(9): 4053-4067. DOI: 10.1039/D5EE00615E. |
[67] | GUO P B, LI X Y, TANG T, et al. Modularized cathode with neural network topology for high rate and fault-tolerant lithium-sulfur batteries[J]. Advanced Materials, 2025. DOI: 10.1002/adma.2025 04908. |
[68] | LIN J X, DAI P, HU S N, et al. Sulfur defect engineering controls Li2S crystal orientation towards dendrite-free lithium metal batteries[J]. Nature Communications, 2025, 16: 3130. DOI: 10.1038/s41467-025-57572-5. |
[69] | AOYAGI S, IWAMA E, MATSUMURA K, et al. Ultra-densified TiO2(B) anode with fluid-like compressibility: Enhancing volumetric capacity for high-performance supercapacitors[J]. Small, 2025, 21(19): 2410793. DOI: 10.1002/smll.202410793. |
[70] | CAO Y, GENG C N, BAI C, et al. Integrating solid interfaces for catalysis in all-solid-state lithium-sulfur batteries[J]. Energy & Environmental Science, 2025, 18(8): 3795-3806. DOI: 10.1039/D4EE05845C. |
[71] | PEI L, WU Y H, SHEN X L, et al. Energy state estimation for series-connected battery packs based on online curve construction of pack comprehensive OCV[J]. Energies, 2025, 18(7): 1772. DOI: 10.3390/en18071772. |
[72] | YU Z, SINGH B, YU Y, et al. Suppressing argyrodite oxidation by tuning the host structure for high-areal-capacity all-solid-state lithium-sulfur batteries[J]. Nature Materials, 2025: 1-9. DOI: 10.1038/s41563-025-02238-2. |
[73] | LEI X F, HE M L, WU P L, et al. Fabrication of a mechanically robust solid-electrolyte interphase on sodium-metal anodes by anion modulation for ambient sodium-air batteries[J]. Small Methods, 2025. DOI: 10.1002/smtd.2024 01930. |
[74] | SONG H M, MÜNCH K, LIU X, et al. All-solid-state Li-S batteries with fast solid-solid sulfur reaction[J]. Nature, 2025, 637(8047): 846-853. DOI: 10.1038/s41586-024-08298-9. |
[75] | WEN Z, LIU Y W, LI K W, et al. Boosting the Li-O2 pouch cell beyond 860 Wh·kg-1 with an O2-enriched localized high-concentration electrolyte[J]. National Science Review, 2025, 12(7): nwaf059. DOI: 10.1093/nsr/nwaf059. |
[76] | ZHOU Y, YIN K, HUANG Y Y, et al. D-orbital reconstruction achieves low charge overpotential in Li-oxygen batteries[J]. Nature Communications, 2025, 16: 3353. DOI: 10.1038/s41467-025-58640-6. |
[77] | LI D C, LEI M, CHEN K Y, et al. Enable rechargeable carbon fluoride batteries with ultra-high rate and ultra-long life by electrolyte solvation structure and interface design[J]. Nano Energy, 2025, 141: 111074. DOI: 10.1016/j.nanoen.2025.111074. |
[78] | TANG P, GUAN S Q, WU C, et al. Deciphering the crystallographic effect in radially architectured polycrystalline layered cathode materials for lithium-ion batteries[J]. Angewandte Chemie, 2025, 137(26): e202503108. DOI: 10.1002/ange.2025 03108. |
[79] | KIM S H, CHO S H, CHOI Y G, et al. Li-ion diffusivity mismatch in commercial level high-Ni single-crystalline NCM cathode and graphite-SiO composite anode: Degradation mechanism and controlled charging protocol[J]. ACS Applied Materials & Interfaces, 2025, 17(15): 22706-22714. DOI: 10.1021/acsami. 5c01205. |
[80] | NA S, OH R, SONG J, et al. Formation cycle control for enhanced structural stability of Ni-rich LiNixCoyMn1- x- yO2 cathodes[J]. ACS Nano, 2025, 19(2): 2136-2147. DOI: 10.1021/acsnano.4c10476. |
[81] | AL-JALJOULI F, MÜCKE R, ROITZHEIM C, et al. Chemo-thermal stress in all-solid-state batteries: Impact of cathode active materials and microstructure[J]. Journal of Power Sources, 2025, 644: 237136. DOI: 10.1016/j.jpowsour.2025.237136. |
[82] | AOKI Y, MIYOSHI R, KATO K, et al. Correlating electrochemical behavior with morphological and compositional changes in sulfide solid electrolyte all-solid-state batteries after charge/discharge cycles[J]. Acs Applied Energy Materials, 2025, 8(8): 5269-5276. |
[83] | OHASHI T, KOBAYASHI H. Measuring method of electrochemically active surface area in all-solid-state lithium-ion batteries[J]. Batteries & Supercaps, 2025. DOI: 10.1002/batt.202500092. |
[84] | WATANABE K, KIM H S, HIKIMA K, et al. Self-closing of cracks generated in microstructure-controlled 400 μm-thick composite cathodes for all-solid-state batteries: Observed by in situ scanning electron microscopy with energy-dispersive X-ray spectroscopy[J]. Batteries & Supercaps, 2025, 8(6): e202500119. DOI: 10.1002/batt.202500119. |
[85] | CASPAR M, BIECHER Y, TISON Y, et al. Study of the cathode/electrolyte interface in an all-sulfide-solid-state battery using lithium-rich transition metal sulfide[J]. ACS Applied Materials & Interfaces, 2025, 17(4): 7142-7150. DOI: 10.1021/acsami.4c18890. |
[86] | VON MENTLEN J M, GÜNGÖR A S, DEMUTH T, et al. Unraveling multiphase conversion pathways in lithium-sulfur batteries through cryo transmission electron microscopy and machine learning-assisted operando neutron scattering[J]. ACS Nano, 2025, 19(17): 16626-16638. DOI: 10.1021/acsnano.5c00536. |
[87] | MARTIN MAHER S, FLORAS C, BAUER M, et al. Changes to the electrolyte in NMC640/graphite li-ion pouch cells tested for one year at 85 ℃[J]. Journal of the Electrochemical Society, 2025, 172(5): DOI: 10.1149/1945-7111/add41a. |
[88] | LIU C, DOLOCAN A, CUI Z H, et al. Multi-dimensional, multi-scale analysis of interphase chemistry for enhanced fast-charging of lithium-ion batteries with ion mass spectrometry[J]. Journal of the American Chemical Society, 2025, 147(7): 6023-6036. DOI: 10.1021/jacs.4c16561. |
[89] | WANG Z Y, HU X C, ZHANG Y, et al. Ptychographic observation of lithium atoms in the irradiation-sensitive garnet-type solid electrolyte at sub-angstrom resolution[J]. Journal of the American Chemical Society, 2025, 147(21): 18025-18032. DOI: 10.1021/jacs.5c03627. |
[90] | OTOYAMA M, TERASAKI N, TAKEUCHI T, et al. Visualization of local strain distributions in all-solid-state batteries with silicon negative electrodes using digital image correlation for operando/In situ microscopy images[J]. ChemElectroChem, 2025, 12(8): e202400616. DOI: 10.1002/celc.202400616. |
[91] | LEAU C, WANG Y, GERVILLIÉ-MOURAVIEFF C, et al. Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression[J]. Nature Communications, 2025, 16: 757. DOI: 10.1038/s41467-024-55339-y. |
[92] | TURRELL S J, LIANG Y, CAI T C, et al. Origin of stability in the solid electrolyte interphase formed between lithium and lithium phosphorus oxynitride[J]. Chemistry of Materials, 2025, 37(9): 3504-3518. DOI: 10.1021/acs.chemmater.5c00483. |
[93] | LIMON M S R, DUFFEE C W, AHMAD Z. Constriction and contact impedance of ceramic solid electrolytes[J]. Acs Energy Letters, 2025, 10(4): 1999-2006. |
[94] | XIONG R, HE Y H, SUN Y, et al. Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks[J]. Journal of Energy Chemistry, 2025, 104: 618-627. DOI: 10.1016/j.jechem.2025.01.019. |
[95] | QIU S Y, BAI J, WANG P Y, et al. operando magnetism on oxygen redox process in Li-rich cathodes[J]. Advanced Materials, 2025, 37(18): 2420453. DOI: 10.1002/adma.202420453. |
[96] | FAN J B, LIU C C, LI N, et al. Wireless transmission of internal hazard signals in Li-ion batteries[J]. Nature, 2025, 641(8063): 639-645. DOI: 10.1038/s41586-025-08785-7. |
[97] | LIAO Y X, YANG C, SUN L H, et al. Advances in aqueous dual-ion batteries: Anion storage mechanisms, challenges and electrolyte design[J]. Energy Storage Materials, 2025, 77: 104225. DOI: 10.1016/j.ensm.2025.104225. |
[98] | LAO Z J, TAO K H, XIAO X, et al. Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries[J]. Nature Communications, 2025, 16: 1075. DOI: 10.1038/s41467-024-55633-9. |
[99] | YOU Y W, ZHANG D X, WU Z F, et al. Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries[J]. Nature Communications, 2025, 16: 4630. DOI: 10.1038/s41467-025-59895-9. |
[100] | HAO W, LI Y J, HWANG G S, et al. Origin of lithium dendrite formation in sulfide-based electrolyte[J]. Angewandte Chemie, 2025, 137(25): e202500245. DOI: 10.1002/ange.202500245. |
[1] | 马昊远, 吴焱, 王通, 胡锦洋, 李佳, 黄钰期. 基于力-电-温度信号和CNN-BiLSTM模型的磷酸铁锂电池SOC估计[J]. 储能科学与技术, 2025, 14(7): 2865-2874. |
[2] | 程静飞. 基于孤立森林算法的锂电池内部故障分析策略[J]. 储能科学与技术, 2025, 14(7): 2878-2880. |
[3] | 樊慧敏, 彭浩鸿, 孟辉, 唐梦宏, 易昊昊, 丁静, 刘金成, 徐成善, 冯旭宁. 储能电池模组膨胀力特性研究及仿真分析[J]. 储能科学与技术, 2025, 14(6): 2488-2497. |
[4] | 张文杰, 任东生, 吴宇, 芮新宇, 刘翔, 冯旭宁, 卢兰光. 基于Li10GeP12S2 全固态电池关键材料的热稳定性[J]. 储能科学与技术, 2025, 14(6): 2193-2199. |
[5] | 徐章杰, 孙铮岳, 张鑫焱, 张吉亮, 于颖超, 董闯. FeOOH包覆改性FeS锂离子电池负极材料[J]. 储能科学与技术, 2025, 14(6): 2232-2239. |
[6] | 巫春玲, 王立顶, 卢勇, 耿莉敏, 陈昊, 孟锦豪. 基于白鹭群优化高斯过程回归的锂电池SOH估计方法[J]. 储能科学与技术, 2025, 14(6): 2498-2511. |
[7] | 韩丹丹, 张武卫, 张亮, 王宗江. 核壳结构LiMn1-y Fe y PO4/C正极材料设计与电化学性能研究[J]. 储能科学与技术, 2025, 14(6): 2215-2222. |
[8] | 平金珍, 温沁润. 基于电子图像处理技术的锂电池表面缺陷检测[J]. 储能科学与技术, 2025, 14(6): 2512-2514. |
[9] | 汪红辉, 李嘉鑫, 储德韧, 李彦仪, 许铤. 磷酸铁锂电池存储失效机理及热安全性研究[J]. 储能科学与技术, 2025, 14(5): 1797-1805. |
[10] | 陈英健, 吴尚, 曹元成, 杜宝帅, 王振兴, 欧阳钟文, 汤舜. 磁场分选在废旧锂电池正负极材料回收中的应用[J]. 储能科学与技术, 2025, 14(5): 1918-1927. |
[11] | 许晓茹, 欧建臻, 刘佳伟, 陈智聪, 叶豪, 刘颖隆, 刘英丽, 林泽宇, 刘晶晶, 简俊辉, 罗栩, 范竞敏, 王超, 雷励斌, 梁波. 带嵌入式微通道陶瓷裂解反应器的管式氨燃料电池[J]. 储能科学与技术, 2025, 14(5): 1818-1828. |
[12] | 李志强, 巴义春, 孙广强. 锂电池蜂窝形叉状流道冷板散热研究[J]. 储能科学与技术, 2025, 14(5): 1776-1783. |
[13] | 贺瑞璘, 张通, 吴镓淳, 王朝阳, 邓永红, 张光照, 许晓雄. 骨架型材料与设计在高比能锂电池中的应用研究进展[J]. 储能科学与技术, 2025, 14(5): 1758-1775. |
[14] | 孙蔷馥, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.2.1—2025.3.31)[J]. 储能科学与技术, 2025, 14(5): 1727-1747. |
[15] | 丰伟. 废旧锂电池失效机制及回收再利用研究现状[J]. 储能科学与技术, 2025, 14(5): 1928-1930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||