储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2881-2883.doi: 10.19799/j.cnki.2095-4239.2025.0630

• 第十三届储能国际峰会暨展览会专辑 • 上一篇    下一篇

基于机器学习的储能系统容量规划与需求预测研究

张晓慧1(), 杨瑞赓1(), 焦松坤2   

  1. 1.石家庄铁路职业技术学院
    2.中国核电工程有限公司河北分公司,河北 石家庄 050000
  • 收稿日期:2025-06-28 修回日期:2025-07-08 出版日期:2025-07-28 发布日期:2025-07-11
  • 通讯作者: 杨瑞赓,焦松坤 E-mail:jianzhu305@126.com;yangrgsirt@163.com
  • 作者简介:张晓慧(1987—)女,硕士,讲师,研究方向:信息化管理,E-mail:jianzhu305@126.com
  • 基金资助:
    2025年河北省高等学校科学研究项目(ZC2025316)

Research on capacity planning and demand forecasting for energy storage systems based on machine learning

Xiaohui ZHANG1(), Ruigeng YANG1(), Songkun JIAO2   

  1. 1.Department of Rail Transit, Shijiazhuang Institute of Railway Technology
    2.China Nuclear Power Engineering Co. , Ltd. Hebei Branch, Shijiazhuang 050000, Hebei, China
  • Received:2025-06-28 Revised:2025-07-08 Online:2025-07-28 Published:2025-07-11
  • Contact: Ruigeng YANG, Songkun JIAO E-mail:jianzhu305@126.com;yangrgsirt@163.com

摘要:

随着新型电力系统的发展,储能系统的容量规划与电力需求预测面临着高度的不确定性与复杂耦合关系。为应对这一挑战,本文提出了一种基于机器学习的协同建模策略,从理论上构建了“估算-置信-反馈”三阶段容量规划框架,并结合深度学习与集成回归方法,构建多尺度、多分位的负荷预测体系。通过滚动优化与自适应更新机制,实现了容量与需求之间的动态联动与系统自学习。该方法强调数据驱动与策略闭环,提升了预测精度、容量适应性与模型稳健性,为储能系统在多变环境中的智能配置提供理论支撑。

关键词: 储能系统, 容量规划, 需求预测, 机器学习, 数据驱动建模

Abstract:

With the development of new power systems, the capacity configuration of energy storage systems and power demand forecasting face high uncertainty and complex coupling relationships. To address this challenge, this paper proposes a machine learning-based collaborative modeling strategy, theoretically constructing a three-stage capacity planning framework of "estimation-confidence-feedback." By integrating deep learning and ensemble regression methods, a multi-scale, multi-quantile load forecasting system is established. Through rolling optimization and adaptive updating mechanisms, dynamic linkage between capacity and demand, as well as system self-learning, are achieved. This method emphasizes data-driven and closed-loop strategies, improving forecasting accuracy, capacity adaptability, and model robustness, providing theoretical support for the intelligent configuration of energy storage systems in dynamic environments.

Key words: energy storage systems, capacity planning, demand forecasting, machine learning, data-driven modeling

中图分类号: