储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3028-3036.doi: 10.19799/j.cnki.2095-4239.2025.0549
• 短时高频高功率储能专辑 • 上一篇
李鹏举1(), 陈晓宇1, 谢佳2, 沈佳妮1(
), 贺益君1
收稿日期:
2025-06-09
修回日期:
2025-07-07
出版日期:
2025-08-28
发布日期:
2025-08-18
通讯作者:
沈佳妮
E-mail:lipengju@sjtu.edu.cn;jennyshen@sjtu.edu.cn
作者简介:
李鹏举(2001—),男,硕士研究生,研究方向为电池功率状态预测,E-mail:lipengju@sjtu.edu.cn;
基金资助:
Pengju LI1(), Xiaoyu CHEN1, Jia XIE2, Jiani SHEN1(
), Yijun HE1
Received:
2025-06-09
Revised:
2025-07-07
Online:
2025-08-28
Published:
2025-08-18
Contact:
Jiani SHEN
E-mail:lipengju@sjtu.edu.cn;jennyshen@sjtu.edu.cn
摘要:
随着锂离子电池的广泛应用,电池功率状态(state of power, SOP)预测作为保障电池高效、安全运行的关键技术,其重要性日益凸显。本文系统综述了SOP预测方法,对查表法、机理模型法、等效电路模型法和数据驱动法四类方法进行了梳理,并对模组SOP预测进行了探讨。查表法简单直接,但需要多次充放电实验、时间成本较高、使用工况单一;机理模型法基于多孔电极理论和浓溶液理论,通过偏微分方程精确描述电池内部反应机制,可对电池内部参数进行考量,但计算复杂度高;等效电路模型法采用电路元件模拟电池动态响应,易与电压、电流、荷电状态等参数约束结合,兼顾精度与计算效率;数据驱动法利用机器学习算法直接从运行数据构建SOP预测模型,或结合传统机理模型构建混合模型实施SOP预测,预测性能依赖于数据质量和数量。在模组SOP预测方面,重点阐述了电池不一致性对模组功率的影响,并对其解决思路进行了分析。最后,对现有挑战和未来发展方向进行总结。当前SOP预测技术仍面临四个主要挑战:一是应用于储能场景时存在局限性;二是预测精度和计算效率难以满足应用需求;三是电池老化过程中易发生模型失配问题,影响预测精度;四是模组层面电池一致性差异,增加了预测难度。为应对上述挑战,未来SOP预测技术将朝着高精度建模和求解策略优化、模型参数与约束边界动态更新以及“短板电池识别-特征单体建模-模型参数动态更新”等方向发展,为储能系统提供更安全、更高效的电池管理解决方案。
中图分类号:
李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, 2025, 14(8): 3028-3036.
Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036.
[1] | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. DOI: 10. 1002/anie.201105006. |
[2] | XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. DOI: 10.1002/eem2.12450. |
[3] | PLETT G L. High-performance battery-pack power estimation using a dynamic cell model[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1586-1593. DOI: 10.1109/TVT.2004. 832408. |
[4] | VAN REEVEN V, HOFMAN T. Multi-level energy management for hybrid electric vehicles: Part I[J]. Vehicles, 2019, 1(1): 3-40. DOI: 10.3390/vehicles1010002. |
[5] | COLLATH N, TEPE B, ENGLBERGER S, et al. Aging aware operation of lithium-ion battery energy storage systems: A review[J]. Journal of Energy Storage, 2022, 55: 105634. DOI: 10.1016/j.est.2022.105634. |
[6] | PASCUAL J, BARRICARTE J, SANCHIS P, et al. Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting[J]. Applied Energy, 2015, 158: 12-25. DOI: 10.1016/j.apenergy.2015.08.040. |
[7] | DONG X J, SHEN J N, MA Z F, et al. Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints[J]. Energy, 2025, 314: 134163. DOI: 10.1016/j.energy.2024.134163. |
[8] | 庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6): 1044-1057. |
ZHUANG Q C, XU S D, QIU X Y, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6): 1044-1057. | |
[9] | GEETHA N, KAVITHA D, KUMARESAN D. Influence of electrode parameters on the performance behavior of lithium-ion battery[J]. Journal of Electrochemical Energy Conversion and Storage, 2023, 20(1): 011013. DOI: 10.1115/1.4054735. |
[10] | DAI M J, JIANG X H. Research on SOC and SOP co-simulation estimation of lithium-ion battery for vehicle[M]//Advanced Manufacturing and Automation XI. Singapore: Springer Singapore, 2022: 570-577. DOI: 10.1007/978-981-19-0572-8_73. |
[11] | AL RASYID AR Z J, FIRMANSYAH E, WIJAYA F D. Modeling of temperature effect on SoC of lithium ion battery pack[C]//2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE). November 10-11, 2021, Bandung, Indonesia. IEEE, 2021: 299-303. DOI: 10.1109/ISMEE54273.2021.9774044. |
[12] | HAMIDAH N L, NUGROHO G, WANG F M. Electrochemical analysis of electrolyte additive effect on ionic diffusion for high-performance lithium ion battery[J]. Ionics, 2016, 22(1): 33-41. DOI: 10.1007/s11581-015-1505-0. |
[13] | 虢放, 薛明喆, 张存满. 电极厚度对锂离子电池电化学性能的影响[J]. 电源技术, 2017, 41(8): 1114-1117, 1123. |
GUO F, XUE M Z, ZHANG C M. Effects of electrode thickness on electrochemical characteristics of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2017, 41(8): 1114-1117, 1123. | |
[14] | TAO X, WANG Q L, GUO W Q, et al. Influence of aviation low-pressure environment on the aging behavior and thermal safety of lithium titanate batteries[J]. Journal of Energy Storage, 2025, 112: 115488. DOI: 10.1016/j.est.2025.115488. |
[15] | BARCELLONA S, PIEGARI L. Effect of current on cycle aging of lithium ion batteries[J]. Journal of Energy Storage, 2020, 29: 101310. DOI: 10.1016/j.est.2020.101310. |
[16] | 严康为, 龙鑫林, 鲁军勇, 等. 高倍率磷酸铁锂电池简化机理建模与放电特性分析[J]. 电工技术学报, 2022, 37(3): 599-609. DOI: 10.19595/j.cnki.1000-6753.tces.201206. |
YAN K W, LONG X L, LU J Y, et al. Simplified mechanism modeling and discharge characteristic analysis of high C-rate LiFePO4 battery[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 599-609. DOI: 10.19595/j.cnki.1000-6753.tces.201206. | |
[17] | WANG X Y, FANG Q H, DAI H F, et al. Investigation on cell performance and inconsistency evolution of series and parallel lithium-ion battery modules[J]. Energy Technology, 2021, 9(7): 2100072. DOI: 10.1002/ente.202100072. |
[18] | HAN Y J, YUAN H Y, LI J, et al. Study on influencing factors of consistency in manufacturing process of vehicle lithium-ion battery based on correlation coefficient and multivariate linear regression model[J]. Advanced Theory and Simulations, 2021, 4(8): 2100070. DOI: 10.1002/adts.202100070. |
[19] | 汪宜秀, 魏学哲, 房乔华, 等. 面向整组寿命最大化的电动汽车电池一致性变化规律及其均衡策略[J]. 机械工程学报, 2020, 56(22): 176-183. DOI: 10.3901/JME.2020.22.176. |
WANG Y X, WEI X Z, FANG Q H, et al. Consistency variation law and equalization strategy of electric vehicle battery for maximizing the life of the battery pack[J]. Journal of Mechanical Engineering, 2020, 56(22): 176-183. DOI: 10.3901/JME.2020.22.176. | |
[20] | GUO R H, HU C G, SHEN W X. An electric vehicle-oriented approach for battery multi-constraint state of power estimation under constant power operations[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3300-3310. DOI: 10.1109/TVT.2023. 3322285. |
[21] | GUO R H, HU C G, SHEN W X. Battery peak power assessment under various operational scenarios: A comparative study[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 2489-2503. DOI: 10.1109/TTE.2024.3423469. |
[22] | FARMANN A, SAUER D U. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2016, 329: 123-137. DOI: 10.1016/j.jpowsour.2016.08.031. |
[23] | 彭思敏, 徐璐, 张伟峰, 等. 锂离子电池功率状态预测方法综述[J]. 机械工程学报, 2022, 58(20): 361-378. DOI: 10.3901/JME.2022.20.361. |
PENG S M, XU L, ZHANG W F, et al. Overview of state of power prediction methods for lithium-ion batteries[J]. Journal of Mechanical Engineering, 2022, 58(20): 361-378. DOI: 10.3901/JME.2022.20.361. | |
[24] | BELT J R.Battery test manual for plug-in hybrid electric vehicles[J].Fuel Cells, 2010.DOI:10.2172/1010675. |
[25] | 甄子健. 完善EV、HEV用动力蓄电池测试规范[J]. 高技术通讯, 2003, 13(8): 13. |
ZHEN Z J. Improve the test specification of power batteries for EV and HEV[J]. High Technology Letters, 2003, 13(8): 13. | |
[26] | LIU Y, ZHANG C P, JIANG J C, et al. A 3D distributed circuit-electrochemical model for the inner inhomogeneity of lithium-ion battery[J]. Applied Energy, 2023, 331: 120390. DOI: 10.1016/j.apenergy.2022.120390. |
[27] | SUN X D, CAO Y F, ZHENG L F, et al. A comparative investigation on peak current solution methods for lithium-ion battery peak power capability prediction[J]. IEEE Transactions on Energy Conversion, 2023, 38(3): 1691-1700. DOI: 10.1109/TEC.2023.3257302. |
[28] | HUSSAIN A, MAO Z Y, LI M, et al. A comprehensive review of the pseudo-two-dimensional (P2D) model: Model development, solutions methods, and applications[J]. Advanced Theory and Simulations, 2025, 8(5): 2401016. DOI: 10.1002/adts.202401016. |
[29] | 路金玲, 张希, 靳伟, 等. 锂电池电化学传递函数模型的建立和验证[J]. 电源技术, 2017, 41(12): 1715-1717. DOI: 10.3969/j.issn.1002-087X.2017.12.013. |
LU J L, ZHANG X, JIN W, et al. Foundation and validation of electrochemical transfer function model of Li-ion battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1715-1717. DOI: 10.3969/j.issn.1002-087X.2017.12.013. | |
[30] | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. DOI: 10.1149/1.2221597. |
[31] | NEWMAN J, THOMAS K E, HAFEZI H, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 838-843. DOI: 10.1016/S0378-7753(03)00282-9. |
[32] | GRANDJEAN T R B, LI L Y, ODIO M X, et al. Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC). October 14-17, 2019, Hanoi, Vietnam. IEEE, 2019: 1-7. DOI: 10.1109/VPPC46532.2019.8952455. |
[33] | GOPALAKRISHNAN K, OFFER G J. A composite single particle lithium-ion battery model through system identification[J]. IEEE Transactions on Control Systems Technology, 2022, 30(1): 1-13. DOI: 10.1109/TCST.2020.3047776. |
[34] | REN L C, ZHU G R, KANG J Q, et al. An algorithm for state of charge estimation based on a single-particle model[J]. Journal of Energy Storage, 2021, 39: 102644. DOI: 10.1016/j.est.2021. 102644. |
[35] | LI W H, FAN Y, RINGBECK F, et al. Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression[J]. Applied Energy, 2022, 306: 118114. DOI: 10.1016/j.apenergy.2021.118114. |
[36] | 沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1): 309-316. DOI: 10.11949/j.issn.0438-1157.20171097. |
SHEN J N, HE Y J, MA Z F. Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69(1): 309-316. DOI: 10.11949/j.issn.0438-1157. 20171097. | |
[37] | JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2): 321-329. DOI: 10.1016/S0378-7753(02)00194-5. |
[38] | YANN LIAW B, NAGASUBRAMANIAN G, JUNGST R G, et al. Modeling of lithium ion cells-a simple equivalent-circuit model approach[J]. Solid State Ionics, 2004, 175(1/2/3/4): 835-839. DOI: 10.1016/j.ssi.2004.09.049. |
[39] | 魏增福, 董波, 刘新天, 等. 锂电池动态系统Thevenin模型研究[J]. 电源技术, 2016, 40(2): 291-293, 415. DOI: 10.3969/j.issn.1002-087X.2016.02.017. |
WEI Z F, DONG B, LIU X T, et al. Study on dynamical system Thevenin model of Li-ion battery[J]. Chinese Journal of Power Sources, 2016, 40(2): 291-293, 415. DOI: 10.3969/j.issn.1002-087X.2016.02.017. | |
[40] | 寇睿媛, 王顺利, 屈维. 锂离子蓄电池PNGV等效电路模型构建方法研究[J]. 电源世界, 2015, 18(7): 41-44. |
KOU R Y, WANG S L, QU W. Lithium-ion battery PNGV equivalent circuit model construction method study[J]. The World of Power Supply, 2015, 18(7): 41-44. | |
[41] | GUO R H, SHEN W X. A model fusion method for online state of charge and state of power co-estimation of lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11515-11525. DOI: 10.1109/TVT.2022.3193735. |
[42] | LIU C H, HU M H, JIN G Q, et al. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102954. DOI: 10.1016/j.est.2021.102954. |
[43] | HUANG K F, WANG Y, FENG J Q. Research on equivalent circuit Model of Lithium-ion battery for electric vehicles[C]//2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). December 4-6, 2020, Shanghai, China. IEEE, 2020: 492-496. DOI: 10.1109/WCMEIM52463.2020. 00109. |
[44] | MALYSZ P, YE J, GU R, et al. Battery state-of-power peak current calculation and verification using an asymmetric parameter equivalent circuit model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4512-4522. DOI: 10.1109/TVT.2015.2443975. |
[45] | JIANG B, DAI H F, WEI X Z, et al. Online reliable peak charge/discharge power estimation of series-connected lithium-ion battery packs[J]. Energies, 2017, 10(3): 390. DOI: 10.3390/en10030390. |
[46] | ZHOU S D, LIU X H, HUA Y, et al. Adaptive model parameter identification for lithium-ion batteries based on improved coupling hybrid adaptive particle swarm optimization- simulated annealing method[J]. Journal of Power Sources, 2021, 482: 228951. DOI: 10.1016/j.jpowsour.2020.228951. |
[47] | MOHAMED M A A, YU T F, GRANDJEAN T. PSO-tuned variable forgetting factor recursive least square estimation of 2RC equivalent circuit model parameters for lithium-ion batteries[C]//2023 IEEE Vehicle Power and Propulsion Conference (VPPC). October 24-27, 2023, Milan, Italy. IEEE, 2023: 1-6. DOI: 10.1109/VPPC60535.2023.10403331. |
[48] | ZHONG Z J, ZHAI J Y. Model-based battery SOC estimation based on GA-UKF algorithm[C]//Proceedings of 2020 Chinese Intelligent Systems Conference. Singapore: Springer, 2021: 298-306. DOI: 10.1007/978-981-15-8458-9_32. |
[49] | WANG Q K, HE Y J, SHEN J N, et al. A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach[J]. Energy, 2017, 138: 118-132. DOI: 10.1016/j.energy.2017.07.035. |
[50] | KARIMI D, BEHI H, VAN MIERLO J, et al. Equivalent circuit model for high-power lithium-ion batteries under high current rates, wide temperature range, and various state of charges[J]. Batteries, 2023, 9(2): 101. DOI: 10.3390/batteries9020101. |
[51] | GOSHTASBI A, ZHAO R X, WANG R T, et al. Enhanced equivalent circuit model for high current discharge of lithium-ion batteries with application to electric vertical takeoff and landing aircraft[J]. Journal of Power Sources, 2024, 620: 235188. DOI: 10.1016/j.jpowsour.2024.235188. |
[52] | SHEN J N, WANG Q K, MA Z F, et al. Nonlinear optimization strategy for state of power estimation of lithium-ion batteries: A systematical uncertainty analysis of key impact parameters[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 6680-6689. DOI: 10.1109/TII.2021.3111539. |
[53] | PAN R, WANG Y J, ZHANG X, et al. Power capability prediction for lithium-ion batteries based on multiple constraints analysis[J]. Electrochimica Acta, 2017, 238: 120-133. DOI: 10.1016/j.electacta. 2017.04.004. |
[54] | SUN F C, XIONG R, HE H W, et al. Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries[J]. Applied Energy, 2012, 96: 378-386. DOI: 10.1016/j.apenergy.2012.02.061. |
[55] | HU X S, XIONG R, EGARDT B. Model-based dynamic power assessment of lithium-ion batteries considering different operating conditions[J]. IEEE Transactions on Industrial Informatics, 2014, 10(3): 1948-1959. DOI: 10.1109/TII.2013.2284713. |
[56] | GUO R H, SHEN W X. An enhanced multi-constraint state of power estimation algorithm for lithium-ion batteries in electric vehicles[J]. Journal of Energy Storage, 2022, 50: 104628. DOI: 10.1016/j.est.2022.104628. |
[57] | LU J H, CHEN Z Y, YANG Y, et al. Online estimation of state of power for lithium-ion batteries in electric vehicles using genetic algorithm[J]. IEEE Access, 2018, 6: 20868-20880. |
[58] | ZHANG S, GUO X, ZHANG X. Modeling of back-propagation neural network based state-of-charge estimation for lithium-ion batteries with consideration of capacity attenuation[J]. Advances in Electrical and Computer Engineering, 2019, 19(3): 3-10. DOI: 10.4316/aece.2019.03001. |
[59] | 戴群亮, 赵丁选. 基于BP神经网络优化算法的工程车辆挡位判断的训练及仿真[J]. 机械工程学报, 2002, 38(11): 124-127. DOI: 10. 3321/j.issn: 0577-6686.2002.11.026. |
DAI Q L, ZHAO D X. Training and simulation on gear position decision for vehi-cle based on optimal algorithm of bp network[J]. Chinese Journal of Mechanical Engineering, 2002, 38(11): 124-127. DOI: 10.3321/j.issn: 0577-6686.2002.11.026. | |
[60] | 全小红, 索春光, 张文斌, 等. 基于最小二乘支持向量机的锂离子电池的SOC估算[J]. 新技术新工艺, 2014(1): 94-96. DOI: 10.3969/j.issn.1003-5311.2014.01.030. |
QUAN X H, SUO C G, ZHANG W B, et al. Estimation of lithium ion battery SOC based on least square support vector machine[J]. New Technology & New Process, 2014(1): 94-96. DOI: 10.3969/j.issn.1003-5311.2014.01.030. | |
[61] | 郑方丹, 姜久春, 陈坤龙, 等. 基于数据统计特性的GS-SVM电池峰值功率预测模型[J]. 电力自动化设备, 2017, 37(9): 56-61. DOI: 10.16081/j.issn.1006-6047.2017.09.008. |
ZHENG F D, JIANG J C, CHEN K L, et al. Peak power prediction model for batteries based on data statistical characteristic and GS-SVM[J]. Electric Power Automation Equipment, 2017, 37(9): 56-61. DOI: 10.16081/j.issn.1006-6047.2017.09.008. | |
[62] | XIAO F, LI C R, FAN Y X, et al. State of charge estimation for lithium-ion battery based on Gaussian process regression with deep recurrent kernel[J]. International Journal of Electrical Power & Energy Systems, 2021, 124: 106369. DOI: 10.1016/j.ijepes. 2020.106369. |
[63] | QU W W, DENG H, PANG Y, et al. An improved Gaussian process regression based aging prediction method for lithium-ion battery[J]. World Electric Vehicle Journal, 2023, 14(6): 153. DOI: 10. 3390/wevj14060153. |
[64] | 朱浩, 张文博, 邓元望, 等. 基于SA+BP混合算法的动力电池放电峰值功率估算[J]. 江苏大学学报(自然科学版), 2020, 41(2): 192-198. DOI: 10.3969/j.issn.1671-7775.2020.02.012. |
ZHU H, ZHANG W B, DENG Y W, et al. Peak power estimation of power battery discharge based on SA+BP hybrid algorithm[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(2): 192-198. DOI: 10.3969/j.issn.1671-7775.2020.02.012. | |
[65] | GAO G X, DONG G Z, LOU Y J, et al. Physics-informed data-driven power capacity prediction of lithium-ion battery against various temperatures[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(6): 8670-8681. DOI: 10.1109/TITS.2025.3549458. |
[66] | 丁明, 陈忠, 苏建徽, 等. 可再生能源发电中的电池储能系统综述[J]. 电力系统自动化, 2013, 37(1): 19-25, 102. DOI: 10.7500/AEPS 201210106. |
DING M, CHEN Z, SU J H, et al. An overview of battery energy storage system for renewable energy generation[J]. Automation of Electric Power Systems, 2013, 37(1): 19-25, 102. DOI: 10. 7500/AEPS201210106. | |
[67] | CAI Y P, CANCIAN M, D'ARPINO M, et al. A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation[C]//2019 IEEE National Aerospace and Electronics Conference (NAECON). July 15-19, 2019. Dayton, OH, USA. IEEE, 2019: 24-30. DOI: 10.1109/naecon46414.2019.9057803. |
[68] | FANTHAM T. Experimental analysis, modelling and optimisation of large scale lithium-ion batteries [D]. Sheffield: University of Sheffield, 2021. |
[69] | 王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(8): 1836-1847. DOI: 10. 19595/j.cnki.1000-6753.tces.190392. |
WANG S, YIN Z D, ZHENG Z, et al. Representation of influence factors for battery module consistency on discharge voltage curves[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1836-1847. DOI: 10.19595/j.cnki.1000-6753.tces.190392. | |
[70] | 魏学哲, 陆天怡, 房乔华, 等. 并联电池组电流分布及寿命一致性演变规律研究[J]. 机电一体化, 2018, 24(S1): 3-11. DOI: 10.16413/j.cnki.issn.1007-080x.2018.z1.001. |
WEI X Z, LU T Y, FANG Q H, et al. A study of current distribution and lifetime inconsistency evolution pattern in parallel-connected battery modules[J]. Mechatronics, 2018, 24(S1): 3-11. DOI: 10.16413/j.cnki.issn.1007-080x.2018.z1.001. | |
[71] | ZHANG E, YAN S, ZHANG Y, et al. Influence of parameter differences on the current distribution within parallel-connected liquid metal batteries[C]//2023 26th International Conference on Electrical Machines and Systems (ICEMS). November 5-8, 2023, Zhuhai, China. IEEE, 2023: 4632-4637. DOI: 10.1109/ICEMS 59686.2023.10345054. |
[72] | HAN W J, ALTAF F, ZOU C F, et al. State of power prediction for battery systems with parallel-connected units[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 925-935. DOI: 10.1109/TTE.2021.3101242. |
[73] | WANG S L, STROE D I, FERNANDEZ C, et al. A novel power state evaluation method for the lithium battery packs based on the improved external measurable parameter coupling model[J]. Journal of Cleaner Production, 2020, 242: 118506. DOI: 10.1016/j.jclepro.2019.118506. |
[74] | ZHONG L, ZHANG C B, HE Y, et al. A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis[J]. Applied Energy, 2014, 113: 558-564. DOI: 10.1016/j.apenergy.2013.08.008. |
[75] | WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450. DOI: 10.1016/j.jpowsour.2020.228450. |
[76] | SHEN J N, WANG Q K, WANG C, et al. Discriminating internal multiparameter difference from shape dissimilarity between voltage curves of lithium-ion batteries[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 1832-1841. DOI: 10.1109/TII.2023.3281848. |
[77] | ZHOU Z K, KANG Y Z, SHANG Y L, et al. Peak power prediction for series-connected LiNCM battery pack based on representative cells[J]. Journal of Cleaner Production, 2019, 230: 1061-1073. DOI: 10.1016/j.jclepro.2019.05.144. |
[1] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
[2] | 胡力月, 黄威, 周云, 周英强, 邵常政, 王柯. 基于模糊推理的储能系统锂离子电池模组热扩散概率评估方法[J]. 储能科学与技术, 2025, 14(7): 2662-2674. |
[3] | 王薇, 梁惠施, 李棉刚, 周奎, 王薇, 王姿尧, 史梓男. 基于迁移学习的锂电池不可逆析锂监测方法[J]. 储能科学与技术, 2025, 14(7): 2698-2706. |
[4] | 熊峰, 孔得朋, 平平, 张越, 任宪通, 吕耀. 电热耦合诱导三元锂离子电池热失控特性[J]. 储能科学与技术, 2025, 14(7): 2752-2760. |
[5] | 翁雯媛, 沈斌, 朱建功, 汪洋, 路华鹏, 何乌利雅苏, 刘浩男, 戴海峰, 魏学哲. 锂离子电池阳极危害性析锂原位检测综述[J]. 储能科学与技术, 2025, 14(7): 2575-2589. |
[6] | 张子敬, 原蓓蓓, 李红, 高颖. 锂离子电池热失控气体检测分析及预警[J]. 储能科学与技术, 2025, 14(7): 2820-2832. |
[7] | 刘佳辉, 卞伟翔, 李大伟. 锂电池石墨复合电极力-电耦合性能原位测量分析[J]. 储能科学与技术, 2025, 14(6): 2240-2247. |
[8] | 陈峥, 多功东, 申江卫, 沈世全, 刘昱, 魏福星. 基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(6): 2476-2487. |
[9] | 阮晶晶, 巫湘坤, 李勇慧, 赵冲冲, 李珅珅, 王童飞, 梁圣杰, 高桂红. 低成本干法石墨厚电极的制备与性能研究[J]. 储能科学与技术, 2025, 14(6): 2248-2255. |
[10] | 韩丹丹, 张武卫, 张亮, 王宗江. 核壳结构LiMn1-y Fe y PO4/C正极材料设计与电化学性能研究[J]. 储能科学与技术, 2025, 14(6): 2215-2222. |
[11] | 王功瑞, 张安萍, 任萱萱, 杨铭哲, 韩宇宁, 吴忠帅. 高电压钴酸锂正极:关键挑战、改性策略与未来展望[J]. 储能科学与技术, 2025, 14(6): 2278-2319. |
[12] | 周海洋, 张振东, 盛雷, 朱泽华, 张晓军, 张春风. 储能用锂电池浸没式热性能调控仿真及热安全实验研究[J]. 储能科学与技术, 2025, 14(5): 1866-1874. |
[13] | 宋海飞, 王乐红, 原义栋, 赵天挺, 陈捷. 基于改进卡尔曼算法的电池采样电压滤波估计[J]. 储能科学与技术, 2025, 14(5): 2106-2113. |
[14] | 曾州岚, 尚雷, 胡志金, 王宗凡, 辛小超, 刘瑛. 高容量锂离子电池正极补锂材料Li5FeO4@C的性能研究[J]. 储能科学与技术, 2025, 14(5): 1875-1883. |
[15] | 莫子鸣, 饶宗昕, 杨建飞, 杨孟昊, 蔡黎明. 锂离子电池过充热失控气热模型构建及关键参数影响分析[J]. 储能科学与技术, 2025, 14(5): 1784-1796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||