| [1] |
HUANG B, PAN Z F, SU X Y, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. DOI: 10.1016/j.jpowsour. 2018.07.116.
|
| [2] |
HE H W, SUN F C, WANG Z P, et al. China's battery electric vehicles lead the world: Achievements in technology system architecture and technological breakthroughs[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100020. DOI: 10.1016/j.geits.2022.100020.
|
| [3] |
黄凯, 郭永芳, 李志刚. 动力锂离子电池荷电状态估计综述[J]. 电源技术, 2018, 42(9): 1398-1401.
|
|
HUANG K, GUO Y F, LI Z G. Review of state of charge estimation methods for power lithium-ion battery[J]. Chinese Journal of Power Sources, 2018, 42(9): 1398-1401.
|
| [4] |
彭思敏, 徐璐, 张伟峰, 等. 锂离子电池功率状态预测方法综述[J]. 机械工程学报, 2022, 58(20): 361-378.
|
|
PENG S M, XU L, ZHANG W F, et al. Overview of state of power prediction methods for lithium-ion batteries[J]. Journal of Mechanical Engineering, 2022, 58(20): 361-378.
|
| [5] |
FARMANN A, SAUER D U. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2016, 329: 123-137. DOI: 10.1016/j.jpowsour.2016.08.031.
|
| [6] |
李锦满, 李儒欢, 李浩南, 等. 基于无迹卡尔曼滤波的动力电池状态估计[J]. 电池, 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010.
|
|
LI J M, LI R H, LI H N, et al. State estimation for power battery based on unscented Kalman filter[J]. Dianchi(Battery Bimonthly), 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010.
|
| [7] |
全国汽车标准化技术委员会. 电动汽车用电池管理系统技术条件: GB/T 38661—2020[S]. 北京: 中华人民共和国国家市场监督管理总局, 中华人民共和国国家标准化管理委员会, 2020.
|
| [8] |
郑方丹, 姜久春, 陈坤龙, 等. 基于数据统计特性的GS-SVM电池峰值功率预测模型[J]. 电力自动化设备, 2017, 37(9): 56-61. DOI: 10.16081/j.issn.1006-6047.2017.09.008.
|
|
ZHENG F D, JIANG J C, CHEN K L, et al. Peak power prediction model for batteries based on data statistical characteristic and GS-SVM[J]. Electric Power Automation Equipment, 2017, 37(9): 56-61. DOI: 10.16081/j.issn.1006-6047.2017.09.008.
|
| [9] |
程泽, 孙幸勉, 程思璐. 一种锂离子电池荷电状态估计与功率预测方法[J]. 电工技术学报, 2017, 32(15): 180-189. DOI: 10.19595/j.cnki.1000-6753.tces.160557.
|
|
CHENG Z, SUN X M, CHENG S L. Method for estimation of state of charge and power prediction of lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 180-189. DOI: 10.19595/j.cnki.1000-6753.tces.160557.
|
| [10] |
李博豪. 多约束条件下基于数据模型融合的锂离子电池状态多功能估计与分析[D]. 银川: 宁夏大学, 2023. DOI: 10.27257/d.cnki.gnxhc. 2023.000825.
|
|
LI B H. Multifunctional estimation and analysis of lithium-ion battery state based on data model fusion under multi-constraints[D]. Yinchuan: Ningxia University, 2023. DOI: 10.27257/d.cnki.gnxhc.2023.000825.
|
| [11] |
FENG T H, YANG L, ZHAO X W, et al. Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction[J]. Journal of Power Sources, 2015, 281: 192-203. DOI: 10.1016/j.jpowsour.2015.01.154.
|
| [12] |
高乐. 锂离子电池SOP和SOE估计及半实物仿真验证[D]. 北京: 北京交通大学, 2021. DOI: 10.26944/d.cnki.gbfju.2021.001680.
|
|
GAO L. SOP and SOE estimation and hardware in the loop simulation verification of lithium-ion batteries[D]. Beijing: Beijing Jiaotong University, 2021. DOI: 10.26944/d.cnki.gbfju. 2021. 001680.
|
| [13] |
王春雨, 崔纳新, 李长龙, 等. 基于电热耦合模型和多参数约束的动力电池峰值功率预测[J]. 机械工程学报, 2019, 55(20): 28-35.
|
|
WANG C Y, CUI N X, LI C L, et al. State of power prediction based on electro-thermal battery model and multi-parameter constraints for lithium-ion battery[J]. Journal of Mechanical Engineering, 2019, 55(20): 28-35.
|
| [14] |
VAKILI M, YAHYAEI M, RAMSAY J, et al. Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study[J]. Renewable Energy, 2021, 163: 807-824. DOI: 10.1016/j.renene.2020.08.134.
|
| [15] |
吴华伟, 何成泽, 洪强, 等. 基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算[J/OL]. 储能科学与技术, 2025: 1-16. (2025-04-03). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2025.0194.
|
|
WU H W, HE C Z, HONG Q, et al. SOC estimation of Lithium Iron Phosphate batteries for commercial vehicles based on IFFRLS-IMMUKF[J/OL]. Energy Storage Science and Technology, 2025: 1-16. (2025-04-03). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2025.0194.
|
| [16] |
田元武, 张诗建, 周博雅, 等. 基于ARWLS-AEKF的锂电池SOC估计[J]. 电子测量技术, 2022, 45(17): 43-50. DOI: 10.19651/j.cnki.emt.2209455.
|
|
TIAN Y W, ZHANG S J, ZHOU B Y, et al. Lithium battery SOC estimation based on ARWLS-AEKF joint algorithm[J]. Electronic Measurement Technology, 2022, 45(17): 43-50. DOI: 10.19651/j.cnki.emt.2209455.
|
| [17] |
张金尧. 基于二阶RC等效模型的锂电池状态估计研究[D]. 淮南: 安徽理工大学, 2023. DOI: 10.26918/d.cnki.ghngc.2023.000259.
|
|
ZHANG J Y. Research on state estimation of lithium battery based on second-order RC equivalent model[D]. Huainan: Anhui University of Science & Technology, 2023. DOI: 10.26918/d.cnki.ghngc.2023.000259.
|
| [18] |
赵可沦, 江境宏, 邓进, 等. 基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法[J]. 电子测量技术, 2022, 45(23): 53-58. DOI: 10.19651/j.cnki.emt.2209936.
|
|
ZHAO K L, JIANG J H, DENG J, et al. Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least squares[J]. Electronic Measurement Technology, 2022, 45(23): 53-58. DOI: 10.19651/j.cnki.emt.2209936.
|
| [19] |
乔家璐, 王顺利, 于春梅, 等. 基于加权多新息AEKF的锂电池SOC在线估算[J]. 储能科学与技术, 2021, 10(6): 2318-2325. DOI: 10.19799/j.cnki.2095-4239.2021.0242.
|
|
QIAO J L, WANG S L, YU C M, et al. Novel multiple weighted-AEKF method for online state-of-charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2318-2325. DOI: 10.19799/j.cnki.2095-4239.2021.0242.
|
| [20] |
韩乔妮, 姜帆, 程泽. 变温度下IHF-IGPR框架的锂离子电池健康状态预测方法[J]. 电工技术学报, 2021, 36(17): 3705-3720. DOI: 10.19595/j.cnki.1000-6753.tces.201593.
|
|
HAN Q N, JIANG F, CHENG Z. State of health estimation for lithium-ion batteries based on the framework of IHF-IGPR under variable temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3705-3720. DOI: 10.19595/j.cnki.1000-6753.tces.201593.
|
| [21] |
巫春玲, 吕晶晶, 相里康, 等. 基于变分模态分解和核极限学习机集成模型的电动汽车锂电池健康状态预测[J/OL]. 电源学报, 2023: 1-14. (2023-09-20). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20230918002&dbname=CJFD&dbcode=CJFQ.
|
|
WU C L, LÜ J J, XIANGLI K, et al. Health state prediction of electric vehicle lithium battery based on integrated model of variation modal decomposition and kernel limit learning machine[J/OL]. Journal of Power Supply, 2023: 1-14. (2023-09-20). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20230918002&dbname=CJFD&dbcode=CJFQ.
|
| [22] |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. DOI: 10.1080/21642583. 2019.1708830.
|
| [23] |
李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732.
|
|
LI J B, WANG Z X, TIAN D, et al. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition[J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. DOI: 10. 19799/j.cnki.2095-4239.2024.0732.
|