储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3004-3018.doi: 10.19799/j.cnki.2095-4239.2025.0519
• 短时高频高功率储能专辑 • 上一篇
邢甫旭1(), 覃琪1, 王龙康1, 黎裕冰2, 徐帅凯2, 莫唐明1(
)
收稿日期:
2025-06-03
修回日期:
2025-06-25
出版日期:
2025-08-28
发布日期:
2025-08-18
通讯作者:
莫唐明
E-mail:xingfuxu410@163.com;motangming@gxu.edu.cn
作者简介:
邢甫旭(2001—),男,硕士研究生,研究方向为赝电容超级电容器,E-mail:xingfuxu410@163.com;
基金资助:
Fuxu XING1(), Qi QIN1, Longkang WANG1, Yubing LI2, Shuaikai XU2, Tangming MO1(
)
Received:
2025-06-03
Revised:
2025-06-25
Online:
2025-08-28
Published:
2025-08-18
Contact:
Tangming MO
E-mail:xingfuxu410@163.com;motangming@gxu.edu.cn
摘要:
赝电容器兼具高能量密度与高功率密度的独特优势,在储能领域备受关注。过去十年间,研究人员对赝电容材料的研发与性能提升取得了显著进展。然而,赝电容界面的复杂性和快速充放电特性使得传统实验表征难以全面揭示其离子传输与电荷转移机制,如何全面解析赝电容的微观机理,依然是该领域的难点问题。本综述系统梳理了赝电容理论的发展历程,重点厘清了其与双电层电容及电池行为的本质区别。基于近期的研究进展,深入探讨了理论模拟方法在赝电容机理研究中的关键作用,包括第一性原理计算、隐式溶剂化模型、分子动力学模拟、从头算分子动力学、连续介质输运模型以及多尺度耦合方法的应用。这些模拟技术为解析赝电容材料的界面反应动力学、离子传输机制及结构性能关系提供了重要理论支撑,为高性能赝电容器的设计指明了方向。
中图分类号:
邢甫旭, 覃琪, 王龙康, 黎裕冰, 徐帅凯, 莫唐明. 赝电容超级电容器的理论模拟研究进展[J]. 储能科学与技术, 2025, 14(8): 3004-3018.
Fuxu XING, Qi QIN, Longkang WANG, Yubing LI, Shuaikai XU, Tangming MO. Recent advances in theoretical and computational simulations of pseudocapacitors[J]. Energy Storage Science and Technology, 2025, 14(8): 3004-3018.
[1] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
[2] | 中国化学会电化学专业委员会. 电化学十大科学问题[J]. 电化学(中英文), 2024, 30(1): 4-14. |
Chinese Society of Electrochemistry. The top ten scientific questions in electrochemistry[J]. Journal of Electrochemistry, 2024, 30(1): 4-14. | |
[3] | JIANG Y Q, LIU J P. Definitions of pseudocapacitive materials: A brief review[J]. Energy & Environmental Materials, 2019, 2(1): 30-37. DOI: 10.1002/eem2.12028. |
[4] | FLEISCHMANN S, MITCHELL J B, WANG R C, et al. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 2020, 120(14): 6738-6782. DOI: 10.1021/acs.chemrev.0c00170. |
[5] | CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2019, 5(1): 5-19. DOI: 10.1038/s41578-019-0142-z. |
[6] | PARK H W, ROH K C. Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors-a review[J]. Journal of Power Sources, 2023, 557: 232558. DOI: 10.1016/j.jpowsour.2022.232558. |
[7] | SHAO H, LIN Z F, XU K, et al. Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes[J]. Energy Storage Materials, 2019, 18: 456-461. DOI: 10.1016/j.ensm.2018.12.017. |
[8] | COSTENTIN C, PORTER T R, SAVÉANT J M. How do pseudocapacitors store energy? theoretical analysis and experimental illustration[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8649-8658. DOI: 10.1021/acsami.6b14100. |
[9] | FOONG Y W, HOSSAIN M S, SUKHOMLINOV S V, et al. Faradaic quantized capacitance as an ideal pseudocapacitive mechanism[J]. The Journal of Physical Chemistry C, 2021, 125(8): 4343-4354. DOI: 10.1021/acs.jpcc.0c07862. |
[10] | ZHAN C, LIAN C, ZHANG Y, et al. Computational insights into materials and interfaces for capacitive energy storage[J]. Advanced Science, 2017, 4(7): 1700059. DOI: 10.1002/advs. 201700059. |
[11] | XU K, SHAO H, LIN Z F, et al. Computational insights into charge storage mechanisms of supercapacitors[J]. Energy & Environmental Materials, 2020, 3(3): 235-246. DOI: 10.1002/eem2.12124. |
[12] | GRAHAME D C. Properties of the electrical double layer at a mercury surface. I. methods of measurement and interpretation of results[J]. Journal of the American Chemical Society, 1941, 63(5): 1207-1215. DOI: 10.1021/ja01850a014. |
[13] | CONWAY B E, GILEADI E. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage[J]. Transactions of the Faraday Society, 1962, 58: 2493-2509. DOI: 10.1039/TF9625802493. |
[14] | SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211. DOI: 10.1126/science.1249625. |
[15] | WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931. DOI: 10.1021/jp074464w. |
[16] | TRASATTI S, BUZZANCA G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 29(2): A1-A5. DOI: 10.1016/S0022-0728(71)80111-0. |
[17] | HU G X, TANG C H, LI C X, et al. The Sol-gel-derived nickel-cobalt oxides with high supercapacitor performances[J]. Journal of the Electrochemical Society, 2011, 158(6): A695. DOI: 10.1149/1.3574021. |
[18] | YOSHIDA N, YAMADA Y, NISHIMURA S I, et al. Unveiling the origin of unusual pseudocapacitance of RuO2·nH2O from its hierarchical nanostructure by small-angle X-ray scattering[J]. The Journal of Physical Chemistry C, 2013, 117(23): 12003-12009. DOI: 10.1021/jp403402k. |
[19] | BI S, BANDA H, CHEN M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes[J]. Nature Materials, 2020, 19(5): 552-558. DOI: 10.1038/s41563-019-0598-7. |
[20] | BROUSSE T, BÉLANGER D, LONG J W. To be or not to be pseudocapacitive?[J]. Journal of the Electrochemical Society, 2015, 162(5): A5185-A5189. DOI: 10.1149/2.0201505jes. |
[21] | COSTENTIN C, SAVÉANT J M. Energy storage: Pseudocapacitance in prospect[J]. Chemical Science, 2019, 10(22): 5656-5666. DOI: 10.1039/C9SC01662G. |
[22] | GOGOTSI Y, PENNER R M. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like?[J]. ACS Nano, 2018, 12(3): 2081-2083. DOI: 10.1021/acsnano.8b01914. |
[23] | COME J, AUGUSTYN V, KIM J W, et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes[J]. Journal of the Electrochemical Society, 2014, 161(5): A718-A725. DOI: 10.1149/2.040405jes. |
[24] | FLEISCHMANN S, ZHANG Y, WANG X P, et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes[J]. Nature Energy, 2022, 7(3): 222-228. DOI: 10.1038/s41560-022-00993-z. |
[25] | JIANG J, CAO D P, JIANG D E, et al. Kinetic charging inversion in ionic liquid electric double layers[J]. The Journal of Physical Chemistry Letters, 2014, 5(13): 2195-2200. DOI: 10.1021/jz5009533. |
[26] | KANG J, WEI S H, ZHU K, et al. First-principles theory of electrochemical capacitance of nanostructured materials: Dipole-assisted subsurface intercalation of lithium in pseudocapacitive TiO2 anatase nanosheets[J]. The Journal of Physical Chemistry C, 2011, 115(11): 4909-4915. DOI: 10.1021/jp1090125. |
[27] | BOYD S, GANESHAN K, TSAI W Y, et al. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite[J]. Nature Materials, 2021, 20(12): 1689-1694. DOI: 10.1038/s41563-021-01066-4. |
[28] | SAMPAIO A M, BI S, SALANNE M, et al. Molecular dynamics simulations of ionic liquids confined into MXenes[J]. Energy Storage Materials, 2024, 70: 103502. DOI: 10.1016/j.ensm. 2024. 103502. |
[29] | GIRARD H L, WANG H N, D'ENTREMONT A, et al. Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors[J]. The Journal of Physical Chemistry C, 2015, 119(21): 11349-11361. DOI: 10.1021/acs.jpcc.5b00641. |
[30] | WU Q S, MCDOWELL M T, QI Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries[J]. Journal of the American Chemical Society, 2023, 145(4): 2473-2484. DOI: 10.1021/jacs.2c11807. |
[31] | DEEBANSOK S, DENG J, LE CALVEZ E, et al. Capacitive tendency concept alongside supervised machine-learning toward classifying electrochemical behavior of battery and pseudocapacitor materials[J]. Nature Communications, 2024, 15: 1133. DOI: 10.1038/s41467-024-45394-w. |
[32] | WU X, KANG F Y, DUAN W H, et al. Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials[J]. Progress in Natural Science: Materials International, 2019, 29(3): 247-255. DOI: 10.1016/j.pnsc.2019.04.003. |
[33] | WATANABE E, ROSSMEISL J, BJÖRKETUN M E, et al. Atomic-scale analysis of the RuO2/water interface under electrochemical conditions[J]. The Journal of Physical Chemistry C, 2016, 120(15): 8096-8103. DOI: 10.1021/acs.jpcc.5b12448. |
[34] | WATANABE E, USHIYAMA H, YAMASHITA K, et al. Charge storage mechanism of RuO2/water interfaces[J]. The Journal of Physical Chemistry C, 2017, 121(35): 18975-18981. DOI: 10. 1021/acs.jpcc.7b02500. |
[35] | ZHAO Y, WANG X X, WANG N, et al. Unraveling factors leading to high pseudocapacitance of redox-active small aromatics on graphene[J]. The Journal of Physical Chemistry C, 2019, 123(2): 994-1002. DOI: 10.1021/acs.jpcc.8b08348. |
[36] | LI X L, HUANG Z D, SHUCK C E, et al. MXene chemistry, electrochemistry and energy storage applications[J]. Nature Reviews Chemistry, 2022, 6(6): 389-404. DOI: 10.1038/s41570-022-00384-8. |
[37] | LU C J, YANG L, YAN B Z, et al. Nitrogen-doped Ti3C2 MXene: Mechanism investigation and electrochemical analysis[J]. Advanced Functional Materials, 2020, 30(47): 2000852. DOI: 10.1002/adfm.202000852. |
[38] | BO Z, CHEN Y C, YU Q, et al. Unveiling the energy storage mechanism of MXenes under acidic conditions through transitions of surface functionalizations[J]. The Journal of Physical Chemistry C, 2024, 128(6): 2352-2361. DOI: 10.1021/acs.jpcc.3c06956. |
[39] | CRAMER C J, TRUHLAR D G. Implicit solvation models: Equilibria, structure, spectra, and dynamics[J]. Chemical Reviews, 1999, 99(8): 2161-2200. DOI: 10.1021/cr960149m. |
[40] | ZHAN C, JIANG D E. Understanding the pseudocapacitance of RuO2 from joint density functional theory[J]. Journal of Physics Condensed Matter, 2016, 28(46): 464004. DOI: 10.1088/0953-8984/28/46/464004. |
[41] | ZHAN C, NAGUIB M, LUKATSKAYA M, et al. Understanding the MXene pseudocapacitance[J]. The Journal of Physical Chemistry Letters, 2018, 9(6): 1223-1228. DOI: 10.1021/acs.jpclett.8b00200. |
[42] | ZHAN C, SUN W W, KENT P R C, et al. Computational screening of MXene electrodes for pseudocapacitive energy storage[J]. The Journal of Physical Chemistry C, 2019, 123(1): 315-321. DOI: 10. 1021/acs.jpcc.8b11608. |
[43] | KOVALENKO A, HIRATA F. Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model[J]. The Journal of Chemical Physics, 1999, 110(20): 10095-10112. DOI: 10.1063/1.478883. |
[44] | SUGAHARA A, ANDO Y, KAJIYAMA S, et al. Negative dielectric constant of water confined in nanosheets[J]. Nature Communications, 2019, 10: 850. DOI: 10.1038/s41467-019-08789-8. |
[45] | ANDO Y, OKUBO M, YAMADA A, et al. Capacitive versus pseudocapacitive storage in MXene[J]. Advanced Functional Materials, 2020, 30(47): 2000820. DOI: 10.1002/adfm. 202000820. |
[46] | HARUYAMA J, IKESHOJI T, OTANI M. Electrode potential from density functional theory calculations combined with implicit solvation theory[J]. Physical Review Materials, 2018, 2(9): 095801. DOI: 10.1103/PhysRevMaterials.2.095801. |
[47] | CHEN G L, XIE Y Y, TANG Y, et al. Unraveling the role of metal vacancy sites and doped nitrogen in enhancing pseudocapacitance performance of defective MXene[J]. Small, 2024, 20(12): 2307408. DOI: 10.1002/smll.202307408. |
[48] | GOFF J M, MARQUES DOS SANTOS VIEIRA F, KEILBART N D, et al. Predicting the pseudocapacitive windows for MXene electrodes with voltage-dependent cluster expansion models[J]. ACS Applied Energy Materials, 2021, 4(4): 3151-3159. DOI: 10.1021/acsaem.0c02910. |
[49] | RAPAPORT D C. Molecular dynamics simulation[J]. Computing in Science & Engineering, 1999, 1(1): 70-71. DOI: 10.1109/5992. 743625. |
[50] | XU K, LIN Z F, MERLET C, et al. Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study[J]. ChemSusChem, 2018, 11(12): 1892-1899. DOI: 10. 1002/cssc.201702068. |
[51] | XU T Z, WANG D, ZHANG M R, et al. Ultralow-temperature (≤ -80 ℃) proton pseudocapacitor with high power-energy density enabled by tailored proton-rich electrolyte and electrode[J]. Advanced Functional Materials, 2024, 34(48): 2408465. DOI: 10.1002/adfm.202408465. |
[52] | SHAO H, XU K, WU Y C, et al. Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte[J]. ACS Energy Letters, 2020, 5(9): 2873-2880. DOI: 10.1021/acsenergylett.0c01290. |
[53] | ZENG L, TAN X, JI X Y, et al. Constant charge method or constant potential method: Which is better for molecular modeling of electrical double layers?[J]. Journal of Energy Chemistry, 2024, 94: 54-60. DOI: 10.1016/j.jechem.2024.02.043. |
[54] | MO T M, WANG Z X, ZENG L, et al. Energy storage mechanism in supercapacitors with porous graphdiynes: Effects of pore topology and electrode metallicity[J]. Advanced Materials, 2023, 35(33): 2301118. DOI: 10.1002/adma.202301118. |
[55] | ZHANG B, JI X, XU K, et al. Unraveling the different charge storage mechanism in T and H phases of MoS2[J]. Electrochimica Acta, 2016, 217: 1-8. DOI: 10.1016/j.electacta.2016.09.059. |
[56] | CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474. DOI: 10.1103/PhysRevLett. 55. 2471. |
[57] | WANG X H, MATHIS T S, LI K, et al. Influences from solvents on charge storage in titanium carbide MXenes[J]. Nature Energy, 2019, 4(3): 241-248. DOI: 10.1038/s41560-019-0339-9. |
[58] | TANG B, FANG Y G, ZHU S, et al. Tuning hydrogen bond network connectivity in the electric double layer with cations[J]. Chemical Science, 2024, 15(19): 7111-7120. DOI: 10.1039/D3SC06904D. |
[59] | JIN T, LI H X, LI Y, et al. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage[J]. Nano Energy, 2018, 50: 462-467. DOI: 10.1016/j.nanoen.2018.05.056. |
[60] | MU X P, WANG D S, DU F, et al. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte[J]. Advanced Functional Materials, 2019, 29(29): 1902953. DOI: 10.1002/adfm.201902953. |
[61] | SUN Y, ZHAN C, KENT P R C, et al. Proton redox and transport in MXene-confined water[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 763-770. DOI: 10.1021/acsami.9b18139. |
[62] | SONG H H, JIANG D E. First principles insights into stability of defected MXenes in water[J]. Nanoscale, 2023, 15(39): 16010-16015. DOI: 10.1039/D3NR02538A. |
[63] | WANG X H, MATHIS T S, SUN Y, et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes[J]. ACS Nano, 2021, 15(9): 15274-15284. DOI: 10.1021/acsnano. 1c06027. |
[64] | LIU Y, YU P P, WU Y, et al. The DFT-ReaxFF hybrid reactive dynamics method with application to the reductive decomposition reaction of the TFSI and DOL electrolyte at a lithium-metal anode surface[J]. The Journal of Physical Chemistry Letters, 2021, 12(4): 1300-1306. DOI: 10.1021/acs.jpclett.0c03720. |
[65] | GIRARD H L, WANG H N, D'ENTREMONT A L, et al. Enhancing faradaic charge storage contribution in hybrid pseudocapacitors[J]. Electrochimica Acta, 2015, 182: 639-651. DOI: 10.1016/j.electacta.2015.09.070. |
[66] | GIRARD H L, DUNN B, PILON L. Simulations and interpretation of three-electrode cyclic voltammograms of pseudocapacitive electrodes[J]. Electrochimica Acta, 2016, 211: 420-429. DOI: 10.1016/j.electacta.2016.06.066. |
[67] | LIN H, TRUHLAR D G. QM/MM: What have we learned, where are we, and where do we go from here?[J]. ChemInform, 2007, 38(22): 185-199. DOI: 10.1002/chin.200722224. |
[68] | KOCER E, KO T W, BEHLER J. Neural network potentials: A concise overview of methods[J]. Annual Review of Physical Chemistry, 2022, 73: 163-186. DOI: 10.1146/annurev-physchem-082720-034254. |
[69] | XIE S R, RUPP M, HENNIG R G. Ultra-fast interpretable machine-learning potentials[J]. NPJ Computational Materials, 2023, 9: 162. DOI: 10.1038/s41524-023-01092-7. |
[70] | 邓斌, 华海明, 张与之, 等. 深度势能方法及其在电化学储能材料中的应用[J]. 储能科学与技术, 2024, 13(9): 2884-2906. DOI: 10. 19799/j.cnki.2095-4239.2024.0699. |
DENG B, HUA H M, ZHANG Y Z, et al. Deep potential model: Applications and insights for electrochemical energy storage materials[J]. Energy Storage Science and Technology, 2024, 13(9): 2884-2906. DOI: 10.19799/j.cnki.2095-4239.2024.0699. | |
[71] | WANG Z X, WU T Z, ZENG L, et al. Machine learning relationships between nanoporous structures and electrochemical performance in MOF supercapacitors[J]. Advanced Materials, 2025, 37(15): 2500943. DOI: 10.1002/adma. 202500943. |
[72] | BOOTA M, ANASORI B, VOIGT C, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Advanced Materials, 2016, 28(7): 1517-1522. DOI: 10.1002/adma. 201504705. |
[73] | ZE H J, FAN X T, YANG Z L, et al. Deciphering the competitive charge storage chemistry of metal cations and protons in aqueous MnO2-based supercapacitors[J]. Journal of the American Chemical Society, 2025, 147(11): 9620-9628. DOI: 10. 1021/jacs.4c17458. |
[1] | 潘美玲, 孙楠楠, 赵志超. 二维VC2作为钠离子电池负极材料的理论研究[J]. 储能科学与技术, 2025, 14(2): 497-504. |
[2] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. |
[3] | 赵晨阳, 于晓琨, 陶于兵. 改性氧化铜/正十八烷复合相变材料制备及性能表征研究[J]. 储能科学与技术, 2024, 13(6): 1786-1793. |
[4] | 宋俊, 蒋明杰, 尚文华, 李会洁, 周文俊, 曾小蔚. 第一性原理研究Ge掺杂对硅烯储锂行为的影响[J]. 储能科学与技术, 2024, 13(4): 1293-1301. |
[5] | 杨殷晨, 任山令, 杨志红, 王允辉. 二维硼锑薄膜作为锂硫电池锚定材料的第一性原理研究[J]. 储能科学与技术, 2023, 12(9): 2760-2766. |
[6] | 田禾青, 寇朝阳, 周俊杰, 余银生. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. |
[7] | 祝玉婷, 闫共芹, 林羽芊. MoS2/RGO复合材料的电化学性能和第一性原理研究[J]. 储能科学与技术, 2023, 12(3): 698-709. |
[8] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[9] | 付殿威, 张灿灿, 娜荷芽, 王国强, 吴玉庭, 鹿院卫. 基于分子动力学的熔盐热物性研究进展[J]. 储能科学与技术, 2023, 12(12): 3873-3882. |
[10] | 张文舒, 胡方圆, 黄昊, 王旭东, 姚曼. 基于Ti基MXene的储钠负极及其性能调控机制[J]. 储能科学与技术, 2023, 12(1): 35-41. |
[11] | 熊良涛, 王继芬, 谢华清, 章学来. 空位缺陷对单层石墨烯导热特性影响的分子动力学[J]. 储能科学与技术, 2022, 11(5): 1322-1330. |
[12] | 于沛平, 许亮, 麻冰云, 孙钦涛, 杨昊, 刘越, 程涛. 多尺度模拟研究固体电解质界面[J]. 储能科学与技术, 2022, 11(3): 921-928. |
[13] | 杨民安, 陈宁, 王博, 张乾, 陈敬沛, 赵海雷, 李福燊. 锂离子电池正极材料循环稳定性的基因规律[J]. 储能科学与技术, 2021, 10(2): 462-469. |
[14] | 马新刚, 臧玉魏, 谢连科, 尹建光, 张国英, 马荣春, 袁宪正. 赝电容特性的三维SnS2/碳复合材料的制备及其储锂性能[J]. 储能科学与技术, 2020, 9(5): 1467-1471. |
[15] | 荆葛, 阮殿波. 电化学电容器正名[J]. 储能科学与技术, 2020, 9(4): 1009-1014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||