[1] DUAN J, WU C, CAO Y, et al. Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating[J]. Electrochimica Acta, 2016, 221: 14-22.
[2] LIU X, LIU J, LIU X, et al. Porous magnesia fibers as an immobilizing agent for molten salt in thermal batteries[J]. Journal of the Electrochemical Society, 2016, 163(5): A617-A623.
[3] TANG Z, BAO J, DU Q, et al. Surface surgery of the nickel-rich cathode material LiNi0.815Co0.15Al0.035O2: Toward a complete and ordered surface layered structure and better electrochemical properties[J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34879-34887.
[4] ARUMUGAM R S, MA L, LI J, et al. Special synergy between electrolyte additives and positive electrode surface coating to enhance the performance of Li Ni0.6Mn0.2Co0.2O-2/graphite cells[J]. Journal of the Electrochemical Society, 2016, 163(13): A2531-A2538.
[5] KIM U H, LEE E J, YOON C S, et al. Compositionally graded cathode material with long-term cycling stability for electric vehicles application[J]. Advanced Energy Materials, 2016, 6(22): doi: 10.1002/aenm.201601417.
[6] LEIFER N, SRUR-LAVI O, MATLAHOV I, et al. LiNi0.8Co0.15Al0.05O2 cathode material: New insights via Li-7 and Al-27 magic-angle spinning NMR spectroscopy[J]. Chemistry of Materials, 2016, 28(21): 7594-7604.
[7] DENG Y P, FU F, WU Z G, et al. Layered Li1.3Mn0.58Ni0.12Co0.11O2+d cathode material for lithium-ion batteries with high reversible capacity[J]. ChemElectroChem, 2016, 3(12): 2027-2030.
[8] TABUCHI M, KURIYAMA N, TAKAMORI K, et al. Appearance of lithium-excess LiNiO2 with high cyclability synthesized by thermal decomposition route from LiNiO2-Li2NiO3 solid solution[J]. Journal of the Electrochemical Society, 2016, 163(10): A2312-A2317.
[9] BOERNER M, HORSTHEMKE F, KOLLMER F, et al. Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes[J]. Journal of Power Sources, 2016, 335: 45-55.
[10] HAN S H, SONG J H, YIM T, et al. Communication-improvement of structural stability during high-voltage cycling in high-nickel cathode materials with B2O3 addition[J]. Journal of the Electrochemical Society, 2016, 163(5): A748-A750.
[11] PENG H J, VILLEVIEILLE C, TRABESINGER S, et al. Mechanism of the carbonate-based-electrolyte degradation and its effects on the electrochemical performance of Li1+x(NiaCobMn1-a-b)(1-x)O-2 cells[J]. Journal of Power Sources, 2016, 335: 91-97.
[12] LIM J M, HWANG T, PARK M S, et al. Design of a p-type electrode for enhancing electronic conduction in high-Mn, Li-rich oxides[J]. Chemistry of Materials, 2016, 28(22): 8201-8209.
[13] KIM S, CHOW, ZHANG X, et al. A stable lithium-rich surface structure for lithium-rich layered cathode materials[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms13598.
[14] ZHOU Y N, YUE J L, HU E, et al. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries[J]. Advanced Energy Materials. 2016, 6(21): doi: 10.1002/aenm.201600597.
[15] YABUUCHI N, NAKAYAMA M, TAKEUCHI M, et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms13814.
[16] PARK J S, PARK Y J. Electrochemical performance of carbon coated LiMn2O4 nanoparticles using a new carbon source[J]. Journal of Electrochemical Science and Technology, 2016, 7(2): 139-145.
[17] PEREIRA N, RUOTOLO M C, LU M Y, et al. Elevated temperature performance of high voltage Li1+yMn1.5Ni0.5O4-xFx spinel in window-shifted Li-ion cells[J]. Journal of Power Sources, 2017, 338: 145-154.
[18] NISHIJIMA M, HAMANA M, SAITO T, et al. Phase stability of lithium manganese oxide stored at high temperatures[J]. Journal of the Electrochemical Society, 2016, 163(9): A1841-A1845.
[19] CHOI H W, KIM S J, JEONG M Y, et al. Temperature-dependent oxygen behavior of LixNi0.5Mn1.5O4 cathode material for lithium battery[J]. APL Materials, 2016, 4(11): doi: http://dx.doi.org/ 10.1063/ 1.4968566.
[20] PANG W K, LU C Z, LIU C E, et al. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode[J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17183-17189.
[21] CHUNG S Y, CHOI S Y, KIM T H, et al. Subsurface distribution of antisite defects in LiMnPO4: Direct comparison with LiFePO4[J]. Journal of Physical Chemistry C, 2016, 120(45): 25985-25989.
[22] DUC-THE N, SCIPIONI R, SIMONSEN S B, et al. A TEM study of morphological and structural degradation phenomena in LiFePO4-CB cathodes[J]. International Journal of Energy Research, 2016, 40(14): 2022-2032.
[23] KLEIN A, AXMANN P, WOHLFAHRT-MEHRENS M. Origin of the synergetic effects of LiFe0.3Mn0.7PO4-spinel blends via dynamic in situ X-ray diffraction measurements[J]. Journal of the Electrochemical Society, 2016, 163(9): A1936-A1940.
[24] Clites M, Pomerantseva E. Stabilization of battery electrodes through chemical pre-intercalation of layered materials[J]. Low-Dimensional Materials and Devices 2016, 2016: doi: 10.1117/12.2238655.
[25] DEUNF E, JIMENEZ P, GUYOMARD D, et al. A dual-ion battery using diamino-rubicene as anion-inserting positive electrode material [J]. Electrochemistry Communications, 2016, 72: 64-68.
[26] KUMAR R, TOKRANOV A, SHELDON B W, et al. In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes[J]. ACS Energy Letters, 2016, 1(4): 689-697.
[27] CAO C, STEINRUCK H G, SHYAM B, et al. In situ study of silicon electrode lithiation with X-ray reflectivity[J]. Nano Letters, 2016, 16(12): 7394-7401.
[28] JIANG B, ZENG S, WANG H, et al. Dual core-shell structured Si@SiOx@C nanocomposite synthesized via a one-step pyrolysis method as a highly stable anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31611-31616.
[29] MARKEVICH E, SALITRA G, AURBACH D. Low temperature performance of amorphous monolithic silicon anodes: Comparative study of silicon and graphite electrodes[J]. Journal of the Electrochemical Society, 2016, 163(10): A2407-A2412.
[30] FERRARESI G, CZORNOMAZ L, VILLEVIEILLE C, et al. Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29791-29798.
[31] LIN L, XU X, CHU C, et al. Mesoporous amorphous silicon: A simple synthesis of a high-rate and long-life anode material for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2016, 55(45): 14063-14066.
[32] LEPOIVRE F, LARCHER D, TARASCON J M. Electrochemical activation of silica for enhanced performances of Si-based electrodes[J]. Journal of the Electrochemical Society, 2016, 163(13): A2791-A2796.
[33] BONIFACE M, QUAZUGUEL L, DANET J, et al. Nanoscale chemical evolution of silicon negative electrodes characterized by low-loss STEM-EELS[J]. Nano Letters, 2016, 16(12): 7381-7388.
[34] SHI Q, LIU W, QU Q, et al. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries[J]. Carbon, 2017, 111: 291-298.
[35] WOOD K N, KAZYAK E, CHADWICK A F, et al. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy[J]. ACS Central Science, 2016, 2(11): 790-801.
[36] CAO Z, XU P, ZHAI H, et al. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240.
[37] DOMI Y, DOI T, NAKAGAWA H, et al. In situ raman study on reversible structural changes of graphite negative-electrodes at high potentials in LiPF6-based electrolyte solution[J]. Journal of the Electrochemical Society, 2016, 163(10): A2435-A2440.
[38] LIU W, LIN D, PEI A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J]. Journal of the American Chemical Society, 2016, 138(47): 15443- 15450.
[39] PARONYAN T M, THAPA A K, SHEREHIY A, et al. Incommensurate graphene foam as a high capacity lithium intercalation anode[J]. Scientific Reports, 2017, 7: doi: 10.1038/srep39944.
[40] CHEN M, ZHOU W, QI M, et al. Reconstruction of copper shell on metal oxides as enhanced nanoarrays electrodes for lithium ion batteries[J]. Materials Research Bulletin, 2017, 86: 308-312.
[41] DONG Y, YU M, WANG Z, et al. A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage[J]. Advanced Functional Materials, 2016, 26(42): 7590-7598.
[42] HIRAYAMA M, SHIBUSAWA T, YAMAGUCHI R, et al. Neutron reflectometry analysis of Li4Ti5O12/organic electrolyte interfaces: Characterization of surface structure changes and lithium intercalation properties[J]. Journal of Materials Research, 2016, 31(20): 3142-3150.
[43] JONES E M, CAPRAZ O O, WHITE S R, et al. Reversible and irreversible deformation mechanisms of composite graphite electrodes in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(9): A1965-A1974.
[44] GAO P, LIN X M, REDDY M A, et al. Electrochemical behavior of layered vanadium oxychloride in rechargeable lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(10): A2326-A2332.
[45] JAINI R R, SETZLER B P, STAR A G, et al. Investigating the solid electrolyte interphase formed by additive reduction using physics-based modeling[J]. Journal of the Electrochemical Society, 2016, 163(10): A2185-A2196.
[46] YEN H J, TSAI H, ZHOU M, et al. Structurally defined 3D nanographene assemblies via bottom-up chemical synthesis for highly efficient lithium storage[J]. Advanced Materials (Deerfield Beach, Fla.), 2016, 28(46): 10250-10256.
[47] DI LECCE D, CARBONE L, GANCITANO V, et al. Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes[J]. Journal of Power Sources, 2016, 334: 146-153.
[48] DOI T, SHIMIZU Y, HASHINOKUCHI M, et al. LiBF4-based concentrated electrolyte solutions for suppression of electrolyte decomposition and rapid lithium-ion transfer at LiNi0.5Mn1.5O4 /electrolyte interface[J]. Journal of the Electrochemical Society, 2016, 163(10): A2211-A2215.
[49] YANG B, ZHANG H, YU L, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221: 107-114.
[50] EFTEKHARI A, LIU Y, CHEN P. Different roles of ionic liquids in lithium batteries[J]. Journal of Power Sources, 2016, 334: 221-239.
[51] FORSYTH M, GIRARD G M, BASILE A, et al. Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage[J]. Electrochimica Acta, 2016, 220: 609-617.
[52] PORCARELLI L, SHAPLOV A S, BELLA F, et al. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature[J]. ACS Energy Letters, 2016, 1(4): 678-682.
[53] HARRY K J, HIGA K, SRINIVASAN V, et al. Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode[J]. Journal of the Electrochemical Society, 2016, 163(10): A2216-A2224.
[54] MA C, CHENG Y, YIN K, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy[J]. Nano Letters, 2016, 16(11): 7030-7036.
[55] JAN V D, AFYON S, RUPP J L. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/aenm.201600736.
[56] ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49): 15825-15828.
[57] HOFFMANN V, LAHIRI A, BORISENKO N, et al. Nanostructure of the H-terminated p-Si(111)/ionic liquid interface and the effect of added lithium salt[J]. Physical Chemistry Chemical Physics, 2016: doi: 10.1039/c6cp06306c,
[58] WANG L, LI Q, YANG H, et al. Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte[J]. Chemical Communications, 2016, 52(100): 14430- 14433.
[59] HALL D S, NIE M, ELLIS L D, et al. Surface-electrolyte interphase formation in lithium-ion cells containing pyridine adduct additives. Journal of the Electrochemical Society[J]. 2016, 163(5): A773-A780.
[60] PARK S H, KIM H J, JEON J, et al. Iodine as a temperature- responsive redox shuttle additive for swelling suppression of lithium-ion batteries at elevated temperatures[J]. ChemElectroChem, 2016, 3(11): 1915-1921.
[61] LIN J, GUO J, LIU C, et al. Artificial solid electrolyte interphase with in-situ formed porosity for enhancing lithiation of silicon wafer[J]. Journal of Power Sources, 2016, 336: 401-407.
[62] GLAZIER S L, DOWNIE L E, XIA J, et al. Effects of fluorinated carbonate solvent blends on high voltage parasitic reactions in lithium ion cells using OCV isothermal microcalorimetry[J]. Journal of the Electrochemical Society, 2016, 163(10): A2131-A2138.
[63] DONG Y, DEMEAUX J, LUCHT B L. Investigation of the effect of added methylene ethylene carbonate (MEC) and vinylene carbonate (VC) on LiNi0.5Mn1.5O4/graphite cell performance[J]. Journal of the Electrochemical Society, 2016, 163(10): A2413-A2417.
[64] KIM S, KIM M, CHOI I, et al. Quercetin as electrolyte additive for LiNi0.5Mn1.5O4 cathode for lithium-ion secondary battery at elevated temperature[J]. Journal of Power Sources, 2016, 336: 316-324.
[65] WANG X, ZHENG X, LIAO Y, et al. Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive[J]. Journal of Power Sources, 2017, 338: 108-116.
[66] WAGNER R, KORTH M, STREIPERT B, et al. Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30871-30878.
[67] ATES M N, GUNASEKARA I, MUKERJEE S, et al. In situ formed layered-layered metal oxide as bifunctional catalyst for Li-air batteries[J]. Journal of the Electrochemical Society, 2016, 163(10): A2464-A2474.
[68] BAE Y, YUN Y S, LIM H D, et al. Tuning the carbon crystallinity for highly stable Li-O2 batteries[J]. Chemistry of Materials, 2016, 28(22): 8160-8169.
[69] XU J J, CHANG Z W, WANG Y, et al. Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li-O2 batteries[J]. Advanced Materials, 2016, 28(43): 9-620.
[70] CHUNG S H, CHANG C H, MANTHIRAM A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries[J]. ACS Nano, 2016, 10(11): 10462-10470.
[71] GU S, QIAN R, JIN J, et al. Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(42): 29293-29299.
[72] LANG S Y, SHI Y, GUO Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie (International ed. in English), 2016: doi: 10.1002/anie.201608730.
[73] CAO J, CHEN C, ZHAO Q, et al. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high- performance lithium-sulfur batteries with unconventional configurations[J]. Advanced Materials, 2016, 28(43): doi: 10.1002/adma.201602262.
[74] HU C, CHEN H, XIE Y, et al. Alleviating polarization by designing ultrasmall Li2S nanocrystals encapsulated in N-rich carbon as a cathode material for high-capacity, long-life Li-S batteries[J]. Journal of Materials Chemistry A, 2016, 4(47): 18284-18288.
[75] PENG H J, ZHANG Z W, HUANG J Q, et al. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(43): 9551-9558.
[76] GUO X, SHAO W, CHEN S, et al. Investigation on preparation and properties of TiO2 fiber used for an anode material of lithium ion batteries prepared by the electrospinning procedure[J]. China's Ceramics, 2016, 52(9): 8-11.
[77] SHIBATA S. Thermal atomic layer deposition of lithium phosphorus oxynitride as a thin-film solid electrolyte[J]. Journal of the Electrochemical Society, 2016, 163(13): A2555-A2562.
[78] TALIN A A, RUZMETOV D, KOLMAKOV A, et al. Fabrication, testing, and simulation of all-solid-state three-dimensional Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32385-32391.
[79] DINH-NGUYEN M T, DELACOURT C. Investigation of the passivation properties of the solid electrolyte interphase using a soluble redox couple[J]. Journal of the Electrochemical Society, 2016, 163(5): A706-A713.
[80] ESCOBAR-HERNANDEZ H U, GUSTAFSON R M, PAPADAKI M I, et al. Thermal runaway in lithium-ion batteries: Incidents, kinetics of the runaway and assessment of factors affecting its initiation[J]. Journal of the Electrochemical Society, 2016, 163(13): A2691-A2701.
[81] MASTALI M, FARKHONDEH M, FARHAD S, et al. Electrochemical modeling of commercial LiFePO4 and graphite electrodes: Kinetic and transport properties and their temperature dependence[J]. Journal of the Electrochemical Society, 2016, 163(13): A2803-A2816.
[82] APPIAH W A, PARK J, BYUN S, et al. A mathematical model for cyclic aging of spinel LiMn2O4/graphite lithium-ion cells[J]. Journal of the Electrochemical Society, 2016, 163(13): A2757-A2767.
[83] DANNER T, SINGH M, HEIN S, et al. Thick electrodes for Li-ion batteries: A model based analysis[J]. Journal of Power Sources, 2016, 334: 191-201.
[84] HUANG J, ZHANG J. Theory of impedance response of porous electrodes: Simplifications, inhomogeneities, non-stationarities and applications[J]. Journal of the Electrochemical Society, 2016, 163(9): A1983-A2000.
[85] CACCIATO M, NOBILE G, SCARCELLA G, et al. Real-time model-based estimation of SOC and SOH for energy storage systems[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 794-803.
[86] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: An operando and multi-scale X-ray CT study[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 30912-30919.
[87] DING C C, WU S Y, XU Y Q, et al. Theoretical investigations of the EPR g factors and the local structures for Ni3+ in LiAlyCo1-yO2 at various Al concentrations[J]. Philosophical Magazine, 2016, 96(36): 3735-3745.
[88] CHAN K S, MILLER M A, LIANG W, et al. First principles and experimental studies of empty Si-46 as anode materials for Li-ion batteries[J]. Journal of Materials Research, 2016, 31(23): 3657-3665.
[89] RANGANATH S B, HASSAN A S, RAMACHANDRAN B R, et al. Role of metal-lithium oxide interfaces in the extra lithium capacity of metal oxide lithium-ion battery anode materials[J]. Journal of the Electrochemical Society, 2016, 163(10): A2172-A2178.
[90] YUAN Y, ZHAN C, HE K, et al. The influence of large cations on the electrochemical properties of tunnel-structured metal oxides[J]. Nature Communications, 2016, 7: doi:10.1038/ncomms13374.
[91] AYKOL M, KIM S, HEGDE V I, et al. High-throughput computational design of cathode coatings for Li-ion batteries[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms13779.
[92] EBADI M, BRANDELL D, ARAUJO C M. Electrolyte decomposition on Li-metal surfaces from first-principles theory[J]. Journal of Chemical Physics, 2016, 145(20): doi: http://dx.doi.org/10.1063/1.4967810.
[93] HABASAKI J. Molecular dynamics study of nano-porous materials—Enhancement of mobility of Li ions in lithium disilicate[J]. Journal of Chemical Physics, 2016, 145(20): doi: http: //dx.org/ 10.1063/1.4967874.
[94] HAN Y K, YOO J, JUNG J. Reductive decomposition mechanism of prop-1-ene-1,3-sultone in the formation of a solid-electrolyte interphase on the anode of a lithium-ion battery[J]. Journal of Physical Chemistry C, 2016, 120(50): 28390-28397.
[95] ZHAO T, WANG Q, JENA P. Cluster-inspired design of high-capacity anode for Li-ion batteries[J]. ACS Energy Letters, 2016, 1(1): 202-208.
[96] JOHANSSON D, HANSSON P, MELIN S. Lattice optimization of Si-Cu interfaces on atomic scale[J]. Computational Materials Science, 2017, 128: 59-66.
[97] KLERK D N, ROSLON T, WAGEMAKER M. Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: The effect of Li vacancies, halogens, and halogen disorder[J]. Chemistry of Materials, 2016, 28(21): 7955-7963.
[98] HECKMANN A, KROTT M, STREIPERT B, et al. Suppression of aluminum current collector dissolution by protective ceramic coatings for better high-voltage battery performance[J]. ChemPhysChem : A European Journal of Chemical Physics and Physical Chemistry, 2017, 18: 156-163,
[99] ZAHN R, LAGADEC M F, HESS M, et al. Improving ionic conductivity and lithium-ion transference number in lithium-ion battery separators[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32637-32642.
[100] KEIL P, SCHUSTER S F, WILHELM J, et al. Calendar aging of lithium-ion batteries I. impact of the graphite anode on capacity fade[J]. Journal of the Electrochemical Society, 2016, 163(9): A1872-A1880. |