储能科学与技术 ›› 2017, Vol. 6 ›› Issue (2): 169-189.doi: 10.12028/j.issn.2095-4239.2016.0091
• 特约评述 • 下一篇
陈雨晴1, 2,杨晓飞1, 2,于 滢1, 2,李先锋1, 3,张洪章1, 3,张华民1, 3
收稿日期:
2016-11-21
修回日期:
2016-12-27
出版日期:
2017-03-01
发布日期:
2017-03-01
通讯作者:
张洪章,副研究员,研究方向为锂电池,E-mail:zhanghz@dicp.ac.cn;张华民,研究员,研究方向为储能技术,E-mail:zhanghm@dicp.ac.cn。
作者简介:
陈雨晴(1992—),女,博士研究生,研究方向为锂硫电池,E-mail:chenyuqing@dicp.ac.cn;
基金资助:
CHEN Yuqing1,2, YANG Xiaofei1,2, YU Ying1,2, LI Xianfeng1,3, ZHANG Hongzhang1,3, ZHANG Huamin1,3
Received:
2016-11-21
Revised:
2016-12-27
Online:
2017-03-01
Published:
2017-03-01
摘要: 锂硫电池在理论上具有2600 W•h/kg的质量比能量和2800 W•h/L的体积比能量,且材料成本低廉、环境友好,可以满足很多新兴技术的要求,受到学术界和产业界的广泛关注。但是其在产业化开发过程中遇到诸多技术难题,需要通过正极、负极、隔膜、电解液等基础材料的开发和制造技术的进步获得不断突破。本文从产业化应用的需求出发,总结了锂硫电池在提高其安全性能、循环寿命、功率密度及比能量等方面存在的问题及解决方案,提出电池循环过程中产生的体积变化主要是由于锂负极的不均匀沉积引起的,最后结合电池成本及应用要求预测了未来锂硫电池研究的重要方向。
陈雨晴1, 2,杨晓飞1, 2,于 滢1, 2,李先锋1, 3,张洪章1, 3,张华民1, 3. 锂硫电池关键材料与技术的研究进展[J]. 储能科学与技术, 2017, 6(2): 169-189.
CHEN Yuqing1,2, YANG Xiaofei1,2, YU Ying1,2, LI Xianfeng1,3, ZHANG Hongzhang1,3, ZHANG Huamin1,3. Key materials and technology research progress of lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(2): 169-189.
[1] IDOTA Y, KUBOTA T, MATSUFUJI A, et al. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317): 1395-1397. [2] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499. [3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. [4] ARMAND M, [5] BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie, 2008, 47(16): 2930-2946. [6] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials , 2010, 22(3): 587-603. [7] ROSENMAN A, MARKEVICH E, SALITRA G, et al. Review on Li-sulfur battery systems: An integral perspective[J]. Advanced Energy Material, 2015, 5(16): doi: 10.1002/aenm.201500212. [8] 丁玲. 电动汽车用动力电池发展综述[J]. 电源技术, 2015, 39(7): 1567-1569. DING Ling. Development review of electric vehicle power battery[J]. Chinese Journal of Power Sources, 2015, 39(7): 1567-1569. [9] 宋永华,阳岳希,胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术, 2011, 35(4): 1-7. SONG Yonghua, YANG Yuexi, HU Zechun. Present status and development trend of batteries for electric vehicles[J]. Power System Technology, 2011, 35(4): 1-7. [10] 肖成伟,汪继强. 电动汽车动力电池产业的发展[J]. 科技导报, 2016, 34(6): 74-83. XIAO Chengwei, WANG Jiqiang. The development of electric vehicle power battery industry[J]. Science & Technology Review, 2016, 34(6): 74-83. [11] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. [12] CAO R, XU W, LV D, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Advanced Energy Material, 2015, 5(16): doi: 10.1002/aenm.20140227. [13] SON Y, LEE J S, SON Y, et al. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries[J]. Advanced Energy Material, 2015, 5(16): doi: 10.1002/aenm. 201500110. [14] ZHANG S, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Material, 2015, 5(16): doi: 10.1002/aenm.201500117. [15] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537. [16] PELED E. Lithium-sulfur battery: Evaluation of dioxolane-based electrolytes[J]. Journal of the Electrochemical Society, 1989, 136(6): 1621-1625. [17] LANGENHUIZEN N P W. The effect of mass transport on Li deposition and dissolution[J]. Journal of the Electrochemical Society, 1998, 145(9): 3094-3099. [18] GAN H, TAKEUCHI E S. Lithium electrodes with and without CO2 treatment: Electrochemical behavior and effect on high rate lithium battery performance[J]. Journal of Power Sources, 1996, 62(1): 45-50. [19] AURBACH D, POLLAK E, ELAZARI R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of the Electrochemical Society, 2009, 156(8): A694-A702. [20] XIONG S, KAI X, HONG X,et al. Effect of LiBOB as additive on electrochemical properties of lithium-sulfur batteries[J]. Ionics, 2011, 18(3): 249-254. [21] LIN Z, LIU Z, FU W, et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2013, 23(8): 1064-1069. [22] ISHIKAWA M, YOSHITAKE S, MORITA M, et al. In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives[J]. Journal of the Electrochemical Society, 1994, 141(12): L159-L161. [23] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456. [24] QIAN J, XU W, BHATTACHARYA P, et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15: 135-144. [25] AURBACH D, GOFER Y, LANGZAM J. The correlation between surface-chemistry, surface-morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems[J]. Journal of the Electrochemical Society, 1989, 136(11): 3198-3205. [26] QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6: 6362-6370. [27] ANGELL C A, LIU C, SANCHEZ E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362(6416): 137-139. [28] SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4(2):66-78. [29] LIU M, ZHOU D, HE Y B, et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries[J]. Nano Energy, 2016, 22: 278-289. [30] ZHANG S S, TRAN D T. How a gel polymer electrolyte affects performance of lithium/sulfur batteries[J]. Electrochimica Acta, 2013, 114: 296-302. [31] ISA K B , OSMAN Z, AROF A K, et al. Lithium ion conduction and ion-polymer interaction in PVdF-HFP based gel polymer electrolytes[J]. [32] HACKETT E, MANIAS E, GIANNELIS E P. Computer simulation studies of PEO/layer silicate nanocomposites[J]. Chem. Mater., 2000, 12(12): 2161-2167. [33] MACGLASHAN G S, ANDREEV Y G, BRUCE P G. Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6[J]. Nature, 1999, 398(6730): 792-794. [34] QUARTARONE E, MUSTARELLI P, MAGISTRIS A. PEO-based composite polymer electrolytes[J]. [35] TSAO C H, KUO P L. Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery[J]. Journal of Membrane Science, 2015, 489: 36-42. [36] DENG F, WANG X, HE D, et al. Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries[J]. Journal of Membrane Science, 2015, 491: 82-89. [37] COSTA C M, NUNES-PEREIRA J, RODRIGUES L C, et al. Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications[J]. Electrochimica Acta, 2013, 88(2): 473-476. [38] CHOUDHURY S, MANGAL R, AGRAWAL A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications, 2015, 6: 10101-10109. [39] 胡宗倩. 锂硫电池用改性固态电解质隔膜研究[D]. 北京: 国防科学技术大学, 2011. HU Zongqian. Research on modified solid electrolyte membrane for lithium-sulfur battery[D]. [40] TREVEY J E, JUNG Y S, LEE S H. High lithium ion conducting Li2S-GeS2-P2S5 glass-ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries[J]. Electrochimica Acta, 2011, 56(11): 4243-4247. [41] HAYASHI A, OHTSUBO R, OHTOMO T, et al. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material[J]. Journal of Power Sources, 2008, 183(1): 422-426. [42] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742 -A746. [43] ZHANG J, YUE L, HU P, et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries[J]. Scientific Reports, 2014, 4: 6272-6278. [44] ZHAO Y, HUANG Z, CHEN S, et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries[J]. [45] WANG Q S, WEN Z, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. Chem. Commun., 2016, 52(8): 1637-1640. [46] IBA H, YADA C. Invited presentation: Innovative batteries for sustainable mobility[C]//Meeting Abstracts. The Electrochemical Society, 2014 (1): 120. [47] WANG J L, YANG J, XIE J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502. [48] 王维坤, 余仲宝, 赵春荣, 等. 锂-硫二次电池研究的进展与思路[J]. 第十四次全国电化学会议论文汇编, 江苏: 扬州, 2007. WANG Weikun, YU Zhongbao, ZHAO Chunrong, et al. Research progress and ideas of lithium-sulfur secondary battery[J]. The 14th national electrochemical conference proceedings, [49] DAN P, MENGERITSKI E, GERONOV Y, et al. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell[J]. Journal of Power Sources, 1995, 54(1): 143-145. [50] WEISSMAN I, ZABAN A, AURBACH D. Safely and performance of Tadiran TLR-7103 rechargeable balteries[J]. Journal of the Electrochemical Society, 1996, 143(7): 2110-2116. [51] AURBACH D, ZINIGRAD E, TELLER H, et al. Factors which limit the cycle life of rechargeable lithium (metal) batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1274-1279. [52] MENGERITSKY E, DAN P, WEISSMAN I, et al. High energy rechargeable Li-S cells for EV application, status, remaining problems and solutions[J]. ECS Transactions, 2010, 25(35): 23-34. [53] AURBACH D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218. [54] ZABAN A, ZINIGRAD E, AURBACH D. Impedance spectroscopy of Li electrodes .4. A general simple model of the Li-solution interphase in polar aprotic systems[J]. Journal of Physical Chemistry, 1996, 100(8): 3089-3101. [55] LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2015, 28(9): 1853-1858. [56] GERONOV Y, SCHWAGER F, MULLER R H. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open-circuit conditions[J]. Journal of the Electrochemical Society, 1982, 129(7): 1422-1429. [57] ELY Y E, AURBACH D. Identification of surface-films formed on active metals and nonactive metal-electrodes at low potentials in methyl formate solutions[J]. Langmuir, 1992, 8(7): 1845-1850. [58] MA G, WEN Z, WU M, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chemical Communications, 2014, 50(91): 14209-14212. [59] DING F, LIU Y, HU X. 1,3-dioxolane pretreatment to improve the interfacial characteristics of a lithium anode[J]. Rare Metals, 2006, 25(4): 297-302. [60] ZHU B, JIN Y, HU X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2016: doi: 10.1002/adma.201603755. [61] ZHENG G, LEE S W, LIANG Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8): 618-623. [62] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895. [63] WU M, WEN Z, JIN J, et al. Trimthylsilyl chloride-modified Li anode for enhanced performance of Li-S cells[J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16386-16395. [64] WU M, JIN J, WEN Z. Influence of a surface modified Li anode on the electrochemical performance of Li-S batteries[J]. RSC Adv., 2016, 6(46): 40270-40276. [65] 张密林,颜永得. 锂及锂合金[M]. 北京: 科学出版社, 2015. ZHANG Milin, YAN Yongde. Lithium and lithium alloy[M]. [66] DUAN B, WANG W, ZHAO H, et al. Li-B alloy as anode material for lithium/sulfur battery[J]. ECS Electrochemistry Letters, 2013, 2(6): A47-A51. [67] KWON C W, CHEON S E, SONG J M, et al. Characteristics of a lithium-polymer battery based on a lithium powder anode[J]. Journal of Power Sources, 2001, 93(1): 145-150. [68] KIM J S, YOON W Y. Improvement in lithium cycling efficiency by using lithium powder anode[J]. Electrochimica Acta, 2004, 50(2): 531-534. [69] KIM J S, YOON W Y, YI K Y, et al. The dissolution and deposition behavior in lithium powder electrode[J]. Journal of Power Sources, 2007, 165(2): 620-624. [70] ZHENG S, CHEN Y, XU Y, et al. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries[J]. ACS Nano, 2013, 7(12): 10995-11003. [71] HASSOUN J, SCROSATI B. A high-performance polymer tin sulfur lithium ion battery[J]. Angewandte Chemie, 2010, 49(13): 2371-2374. [72] WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5): 310-315. [73] 黄学杰. 电动汽车动力电池技术研究进展[J]. 科技导报, 2016, 34(6): 28-31. HUANG X J. An overview of xEVs battery technologies[J]. Science & Technology Review, 2016, 34(6): 28-31. [74] AKRIDGE J R, MIKHAYLIK Y V, WHITE N. Li/S fundamental chemistry and application to high-performance rechargeable batteries[J]. [75] 艾新平, 曹余良, 杨汉西. 锂-硫二次电池界面反应的特殊性与对策分析[J]. 电化学, 2012, 18(3): 224-228. AI Xinping, CAO Yuliang, YANG Hanxi. Particularity and countermeasure analysis of the interface reaction in lithium-sulfur battery[J]. Journal of Electrochemistry, 2012, 18(3): 224-228. [76] MA Y, ZHANG H, WU B, et al. Lithium sulfur primary battery with super high energy density: Based on the cauliflower-like structured C/S cathode[J]. Scientific Reports, 2015, 5: 14949-14958. [77] WANG M, ZHANG H, WANG Q, Qu C, Li X, Zhang H. Steam-etched spherical carbon/sulfur composite with highsulfur capacity and long cycle life for Li/S battery application[J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3590-3599. [78] 李泓, 郑杰允. 发展下一代高能量密度动力锂电池——变革性纳米产业制造技术聚焦长续航动力锂电池项目研究进展[J]. 中国科学院院刊, 2016, (9): 1120-1127. LI Hong, ZHENG Jieyun. Development of next generation of high energy density lithium batteries for electric vehicle[J]. Bulletin of Chinese academy of sciences, 2016, 31(9): 1120-1127. [79] DIAO Y, XIE K, XIONG S, et al. Shuttle phenomenon—The irreversible oxidation mechanism of sulfur active material in Li-S battery[J]. Journal of Power Sources, 2013, 235(4): 181-186. [80] 李亚娟, 詹晖, 黄可龙, 等. PEO 基锂硫二次聚合物电池[J]. 化学学报, 2010, 68(18): 1850-1854. LI Yajuan, ZHAN Hui, HUANG Kelong, et al. All solid state lithium sulfur rechargeable battery with PEO-based polymer electrolytes[J]. Acta Chimica Sinica, 2010, 68(18): 1850-1854. [81] 苗力孝. 网络结构碳/硫复合材料的制备及其在锂硫电池中的电化学性能研究[D]. 北京: 北京理工大学, 2014. MIAO Lixiao. Sulfur/carbon composite cathode with net-work for lithium sulfur battery research[D]. [82] DUAN B, WANG W, WANG A, et al. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(42): 13261-13267. [83] SUN F, WANG J, CHEN H, et al. Bottom-up catalytic approach towards nitrogen-enriched mesoporous carbons/sulfur composites for superior Li-S cathodes[J]. Scientific Reports, 2013, 3(10): 2823-2830 [84] HE M, YUAN L X, ZHANG W X, et al. Enhanced cyclability for sulfur cathode achieved by a water-soluble binder[J]. The Journal of Physical Chemistry C, 2011, 115(31): 15703-15709. [85] ELAZARI R, SALITRA G, GARSUCH A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011, 23(47): 5641-5644. [86] SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4(2): 66-78. [87] BAI S, LIU X, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Natrure Energy, 2016, 1(7): 16094-16099. [88] XIONG S, XIE K, DIAO Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries[J]. Electrochim Acta, 2012, 83(12): 78-86. [89] XIN S, GU L, ZHAO N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513. [90] LIANG C, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730. [91] YANG X, YAN N, ZHOU W, et al. Sulfur embedded in one-dimension French fries-like hierarchical porous carbon derived from metal organic framework for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(29): 15314-15323. [92] PANG Q, TANG J, HUANG H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(39): 6021-6028. [93] TANG C, ZHANG Q, ZHAO M Q, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105. [94] WU F, LI J, TIAN Y, et al. 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries[J]. Scientific Reports, 2015, 5: 13340-13349. [95] LIU J, LI W, DUAN L, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015, 15(8): 5137-5142. [96] CHUNG W J, GRIEBEL J J, KIM E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials[J]. Nature Chemistry, 2013, 5(6): 518-524. [97] KIM H, LEE J, AHN H, et al. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries[J]. Nature Communications, 2015, 6: 7278-7287. [98] WEI S Z, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331-1336. [99] ZHOU W, YU Y, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743. [100] ZHANG S S. Binder based on polyelectrolyte for high capacity density lithium/sulfur battery[J]. Journal of the Electrochemical Society, 2012, 159(8): A1226-A1229. [101] YANG X, CHEN Y, WANG M, et al. Phase inversion: A universal method to create high-performance porous electrodes for nanoparticle-based energy storage devices[J]. Advanced Functional Materials, 2016, 26(46): 8427-8434. [102] AURBACH D, GRANOT E. The study of electrolyte solutions based on solvents from the ''glyme'' family (linear polyethers) for secondary Li battery systems[J]. Electrochimica Acta, 1997, 42(4): 697-718. [103] RYU H S, AHN H J, KIM K W, et al. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature[J]. Journal of the Power Sources, 2006, 163(1): 201-206. [104] RYU H S, AHN H J, KIM K W, et al. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte[J]. Electrochim Acta, 2006, 52(4): 1563-1566. [105] LI G, LI Z, ZHANG B, et al. Developments of electrolyte systems for lithium-sulfur batteries: A review[J]. Frontiers in Energy Research, 2015, 3: 5-16. [106] JO G, JEON H, PARK M J. Synthesis of polymer electrolytes based on poly(ethylene oxide) and an anion-stabilizing hard polymer for enhancing conductivity and cation transport[J]. ACS Macro Letters, 2015, 4(2): 225-230. [107] WANG Q, JIN J, WU X, et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21225-21229. [108] SCHEERS J, FANTINI S, JOHANSSON P. A review of electrolytes for lithium-sulphur batteries[J]. Journal of the Power Sources, 2014, 255(255): 204-218. [109] ZHANG S S. New insight into liquid electrolyte of rechargeable lithium/sulfur battery[J]. Electrochimica Acta, 2013, 97(5): 226-230. [110] ZHANG S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of the Power Sources, 2013, 231(2): 153-162. [111] CHEN R, LIU Z, LI L, et al. Electrolyte materials for high energy density lithium-sulfur secondary battery[J]. Chinese Science Bulletin (Chinese Version), 2013, 58(32): 3301 -3311. [112] ZHAO Y, ZHANG Y, GOSSELINK D, et al. Polymer electrolytes for lithium/sulfur batteries[J]. Membranes, 2012, 2(4): 553-564. [113] TERAN A A, BALSARA N P. Effect of lithium polysulfides on the morphology of block copolymer electrolytes[J]. Macromolecules, 2011, 44(23): 9267-9275. [114] GU S, QIAN R, JIN J, et al. Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(42): 29293-29299. [115] BALACH J, JAUMANN T, KLOSE M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015, 25(33): 5285-5291. [116] HUANG J Q, ZHANG Q, PENG H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy & Environmental Science, 2014, 7(1): 347 -353. [117] JIN Z, XIE K, HONG X. Synthesis and electrochemical properties of a perfluorinated ionomer with lithium sulfonyl dicyanomethide functional groups[J]. Journal of Materials Chemistry A, 2013, 1(2): 342-347. [118] JIN Z, XIE K, HONG X. Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator[J]. RSC Advances, 2013, 3(23): 8889-8898. [119] YAMADA T, ITO S, OMODA R, et al. All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: Benefits on anode kinetics[J]. Journal of the Electrochemical Society, 2015, 162(4): A646-A651. [120] UNEMOTO A, YASAKU S, NOGAMI G, et al. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte[J]. Applied Physics Letters, 2014, 105(8): doi: http:// dx.doi.org/10.1063/1.4893666. [121] NAGAO M, IMADE Y, NARISAWA H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte[J]. Journal of the Power Sources, 2013, 222(2): 237-242. [122] MARMORSTEIN D. Solid state lithium/sulfur batteries for electric vehicles: Electrochemical and spectroelectrochemical investigations[D]. [123] ZHANG Y, ZHAO Y, GOSSELINK D, et al. Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid state lithium/sulfur battery[J]. Ionics, 2015, 21(2): 381-385. [124] KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. Journal of Power Sources, 2008, 182(2): 621-625. [125] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. [126] YU X, BI Z, ZHAO F, et al. Hybrid lithium-sulfur batteries with a solid electrolyte membrane and lithium polysulfide catholyte[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16625-16631. [127] YAN N, YANG X, ZHOU W, et al. Fabrication of a nano-Li+-channel interlayer for high performance Li-S battery application[J]. RSC Advances, 2015, 5(33): 26273-26280. [128] SEH Z W, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331-1337. [129] ZHOU W, YU Y, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743. [130] 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453. WU Jiaoyang, LIU Pin, HU Yongsheng, Li Hong. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453. [131] Sionpower. Technology overview[EB/OL]. http://www.sionpower.com/ technology-licerion.php, 2016. |
[1] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 孙春水, 郭德才, 陈剑. 碳化木耳多孔碳的制备及在硫正极中的应用[J]. 储能科学与技术, 2021, 10(6): 2060-2068. |
[4] | 刘洋洋, 王旭阳, 徐谢宇, 王永静, 熊仕昭, 宋忠孝. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272. |
[5] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[6] | 谢彬, 孙嘉楠. 基于机械仿真和测试的高比能量锂硫电池模组开发[J]. 储能科学与技术, 2021, 10(2): 586-597. |
[7] | 闫梦蝶, 李晖, 凌敏, 潘慧霖, 张强. 基于溶解沉积机制锂硫电池的研究进展简评[J]. 储能科学与技术, 2020, 9(6): 1606-1613. |
[8] | 陆贇, 梁嘉宁, 朱用, 李峥嵘, 胡冶州, 陈科, 王得丽. 有机物衍生的锂硫电池正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1454-1466. |
[9] | 吴湘江, 何丰, 曹余良, 艾新平. 电解液组成对固相转化机制硫电极性能的影响[J]. 储能科学与技术, 2020, 9(2): 331-338. |
[10] | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. |
[11] | 叶戈, 袁洪, 赵辰孜, 朱高龙, 徐磊, 侯立鹏, 程新兵, 何传新, 南皓雄, 刘全兵, 黄佳琦, 张强. 全固态锂硫电池正极中离子输运与电子传递的平衡[J]. 储能科学与技术, 2020, 9(2): 339-345. |
[12] | 王久林. 锂硫二次电池之我见[J]. 储能科学与技术, 2020, 9(1): 1-4. |
[13] | 姚琳, 周玲, 李世雄, 李晓敏, 何凯, 何青泉, 宰建陶, 任奇志, 钱雪峰. 层层自组装MoS2多晶片增强锂硫电池性能[J]. 储能科学与技术, 2019, 8(3): 523-531. |
[14] | 杨慧军, 傅璟, 陈加航, 郭城, 郭瑞, 解晶莹, 王久林. 高安全锂硫电池电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 1060-1068. |
[15] | 胡策军, 杨积瑾, 王航超, 陈一帆, 张茸茸, 刘文, 孙晓明. 锂硫电池安全性问题现状及未来发展态势[J]. 储能科学与技术, 2018, 7(6): 1082-1093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||