[1] TYAGI V V, KAUSHIK S C, TYAGI S K, et al. Development of phase change materials based microencapsulated technology for buildings:A review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(2):1373-1391.
[2] REGIN A F, SOLANKI S C, SAINI J S. Heat transfer characteristics of thermal energy storage system using PCM capsules:A review[J]. Renewable & Sustainable Energy Reviews, 2008, 13(2):318-345.
[3] MAO Q. Recent developments in geometrical configurations of thermal energy storage in concentrated solar thermal power plants:A review to recent developments[J]. Applied Energy, 2015, 160:286-307.
[4] CHENG X, LI G, YU G, LI Y, HAN J. Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials[J]. J. Mater. Sci., 2017, 52:12370-12379.
[5] TRUNG D, DUNG, JEONG H M. A pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon, 2016, 99:49-57.
[6] AKHIANI A R, MEHRALI M, LATIBARI S T, et al. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene[J]. J. Phys. Chem. C, 2015, 119:22787-22796.
[7] KARTHIK M, FAIK A, BLANCO-RODRIGUEZ P, et al. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications[J]. Carbon, 2015, 94:266-276.
[8] YANG X, YUAN Y, ZHANG N, CAO X, LIU C. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage[J]. Sol. Energy, 2014, 99:259-266.
[9] MALLOW A, ABDELAZIZ O, GRAHAM S. Thermal charging study of compressed expanded natural graphite/phase change material composites[J]. Carbon, 2016, 109:495-504.
[10] TRYNG D D, JEONG H M. Novel stearic acid/graphene core-shell composite microcapsule as a phase change material exhibiting high shape stability and performance[J]. Sol. Energy Mater. Sol. Cells, 2015, 137:227-234.
[11] MYERS P D, ALAM T E, KAMAL R, et al. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer[J]. Appl. Energy, 2016, 165:225-233.
[12] KARUNAMURTHY K, MURUGUMOHANKUMAR K, SURESH S. Use of CuO nano-material for the improvement of thermal conductivity and performance of low temperature energy storage system of solar pond[J]. Dig. J. Nanomater. Bios., 2012, 7:1833-1841.
[13] WILSON O M, HU X Y, CAHILL D G, BRAUN P V. Colloidal metal particles as probes of nanoscale thermal transport in fluids[J]. Phys. Rev. B, 2002, 66:224-301.
[14] MOTAHAR S, NIKKAM N, ALEMRAJABI A A, et al. Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles[J]. Int. Commun. Heat Mass Transfer, 2014, 59:68-74.
[15] KIBRIA M A, ANISUR M R, MAHFUZ M H, et al. A review on thermophysical properties of nanoparticle dispersed phase change materials[J]. Energy Convers. Manage, 2015, 95:69-89.
[16] KE F, JIANG J, LI Y, et al. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres[J]. Appl. Surf. Sci., 2017, 413:266-274.
[17] SHI R H, ZHANG Z R, FAN H L, et al. Cu-based metal-organic framework/activated carbon composites for sulfur compounds removal[J]. Appl. Surf. Sci., 2017, 394:394-402.
[18] MA X, LI L, WANG S, et al. Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO2 adsorption[J]. Appl. Surf. Sci., 2016, 369:390-397.
[19] XU T, LI Y, CHEN J, et al. Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material[J]. Sol. Energy Mater. Sol. Cells, 2017, 169:215-221.
[20] WU K, XUE Y, YANG W, et al. Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite-multi-wall carbon nanotubes ternary composites[J]. Compos. Sci. Technol., 2016, 130:28-35.
[21] CHE J, WU K, LIN Y, et al. Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy[J]. Composites Part A, 2017, 99:32-40. |