[1] CERICOLA D, RUCH P W, KÖTZ R, et al. Characterization of Bi-material electrodes for electrochemical hybrid energy storage devices[J]. Electrochemistry Communications, 2010, 12(6):812-815.
[2] CERICOLA D, KÖTZ R. Hybridization of rechargeable batteries and electrochemical capacitors:Principles and limits[J]. Electrochimica Acta, 2012, 72:1-17.
[3] DU PASQUIER A, PLITZ I, GURAL J, et al. Power-ion battery:Bridging the gap between Li-ion and supercapacitor chemistries[J]. Journal of Power Sources, 2004, 136:160-170.
[4] 孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23(5):586-603. SUN X Z, ZHANG X, WANG K, et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry, 2017, 23(5):586-603.
[5] 李晨, 张熊, 王凯, 等. 基于CO2转化的碳材料制备及其在超级电容器中的应用[J]. 储能科学与技术, 2017, 6(5):1041-1069. LI C, ZHANG X, WANG K, et al. Supercapacitive application of carbon materials produced by CO2 conversion[J]. Energy Storage Science and Technology, 2017, 6(5):1041-1069.
[6] 郎俊伟, 张旭, 王儒涛, 等. 超级电容器能量密度的提升策略[J]. 电化学, 2017, 23(5):508-532. LANG J W, ZHANG X, WANG R T, et al. Strategies to enhance energy density for supercapacitors[J]. Journal of Electrochemistry, 2017, 23(5):508-532.
[7] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7:845-854.
[8] CERICOLA D, NOVÁK P, WOKAUN A, et al. Segmented Bi-material electrodes of activated carbon and LiMn2O4 for electrochemical hybrid storage devices:Effect of mass ratio and C-rate on current sharing[J]. Electrochimica Acta, 2011, 56(3):1288-1293.
[9] CERICOLA D, RUCH P W, KÖTZ R, et al. Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications[J]. Journal of Power Sources, 2010, 195(9):2731-2736.
[10] LAM L T, LOUEY R. Development of ultra-battery for hybrid-electric vehicle applications[J]. Journal of Power Sources, 2006, 158(2):1140-1148.
[11] 孙方静, 韦联梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6):1223-1230. SUN F J, WEI L M, ZHANG J W, et al. Research progress and evolution methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology, 2017, 6(6):1223-1230.
[12] ZHU G N, LIU H J, ZHUANG J H, et al. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithiumion batteries[J]. Energy & Environmental Science, 2011, 4(10):4016-4022.
[13] CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2):doi:10.1038/nmat123.
[14] 张世明, 车海英, 马紫峰, 等. 基于LiFePO4和活性炭的混合型电化学储能器件研究[J]. 储能科学与技术, 2018, 7(2):240-247. ZHANG S M, CHE H Y, MA Z F, et al. Development of hybrid electrochemical energy storage device based on LiFePO4 and activated carbon[J]. Energy Storage Science and Technology, 2018, 7(2):240-247.
[15] HU X B, LIN Z J, LIU L, et al. Effects of the LiFePO4 content and the preparation method on the properties of (LiFePO4+ AC)/Li4Ti5O12 hybrid battery-capacitors[J]. J. Serb. Chem. Soc, 2010, 75:1259-1269.
[16] HU X B, HUAI Y J, LIN Z J, et al. A (LiFePO4-AC)/Li4Ti5O12 hybrid battery capacitor[J]. Journal of the Electrochemical Society, 2007, 154(11):A1026-A1030.
[17] CHEN S, HU H, WANG C, et al. (LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor:The effect of LiFePO4 content on its performance[J]. Journal of Renewable and Sustainable Energy, 2012, 4:doi:10.1063/1.4727929033114.
[18] BÖCKENFELD N, KÜHNEL R S, PASSERINI S, et al. Composite LiFePO4/AC high rate performance electrodes for Li-ion capacitors[J]. Journal of Power Sources, 2011, 196(8):4136-4142.
[19] BÖCKENFELD N, PLACKE T, WINTER M, et al. The influence of activated carbon on the performance of lithium iron phosphate based electrodes[J]. Electrochimica Acta, 2012, 76:130-136.
[20] WANG B, WANG Q, XU B, et al. The synergy effect on Li storage of LiFePO4 with activated carbon modifications[J]. RSC Advances, 2013, 3(43):20024-20033.
[21] CERICOLA D, NOVÁK P, WOKAUN A, et al. Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices[J]. Electrochimica Acta, 2011, 56(24):8403-8411.
[22] CERICOLA D, NOVÁK P, WOKAUN A, et al. Hybridization of electrochemical capacitors and rechargeable batteries:An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4[J]. Journal of Power Sources, 2011, 196(23):10305-10313.
[23] VARZI A, RAMIREZ-CASTRO C, BALDUCCI A, et al. Performance and kinetics of LiFePO4-carbon bi-material electrodes for hybrid devices:A comparative study between activated carbon and multi-walled carbon nanotubes[J]. Journal of Power Sources, 2015, 273:1016-1022.
[24] LEE H W, MURALIDHARAN P, RUFFO R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries[J]. Nano Letters, 2010, 10(10):3852-3856.
[25] HU X, DENG Z, SUO J, et al. A high rate, high capacity and long life (LiMn2O4+AC)/Li4Ti5O12 hybrid battery-supercapacitor[J]. Journal of Power Sources, 2009, 187(2):635-639.
[26] RUAN D, HUANG Y, LI L, et al. A Li4Ti5O12+AC/LiMn2O4+AC hybrid battery capacitor with good cycle performance[J]. Journal of Alloys and Compounds, 2017, 695:1685-1690.
[27] 王莉, 何向明, 高剑, 等,锂离子电池正极材料生产技术的发展[J]. 储能科学与技术, 2017, 7(5):888-896. WANG L, HE X M, GAO J, et al. Manufacturing method for cathode material of Li-ion batteries[J]. Energy Storage Science and Technology, 2017, 7(5):888-896.
[28] SUN X, ZHANG X, HUANG B, et al. (LiNi0.5Co0.2Mn0.3O2+AC)/graphite hybrid energy storage device with high specific energy and high rate capability[J]. Journal of Power Sources, 2013, 243:361-368.
[29] SUN H, HE X, REN J, et al. Hard carbon/lithium composite anode materials for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(13):4312-4316.
[30] SUN X, ZHANG X, ZHANG H, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J]. Journal of Power Sources, 2014, 270:318-325.
[31] RUI X, YAN Q, SKYLLAS-KAZACOS M, et al. Li3V2(PO4)3 cathode materials for lithium-ion batteries:A review[J]. Journal of Power Sources, 2014, 258:19-38.
[32] NAOI K, KISU K, IWAMA E, et al. Ultrafast cathode characteristics of nanocrystalline-Li3V2(PO4)3/carbon nanofiber composites[J]. Journal of the Electrochemical Society, 2015, 162(6):A827-A833.
[33] SECCHIAROLI M, MARASSI R, WOHLFAHRT-MEHRENS M, et al. The synergic effect of activated carbon and Li3V1.95Ni0.05(PO4)3/C for the development of high energy and power electrodes[J]. Electrochimica Acta, 2016, 219:425-434.
[34] SHELLIKERI A, YTURRIAGA S, ZHENG J S, et al. Hybrid lithiumion capacitor with LiFePO4/AC composite cathode-Long term cycle life study, rate effect and charge sharing analysis[J]. Journal of Power Sources, 2018, 392:285-295. |