Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (3): 365-375.doi: 10.12028/j.issn.2095-4239.2018.0018
Previous Articles Next Articles
LI Wenting1,2,3, AN Shengli2,3,4, QIU Xinping1
Received:
2018-02-03
Revised:
2018-03-21
Online:
2018-05-01
Published:
2018-05-01
CLC Number:
LI Wenting, AN Shengli, QIU Xinping. Research on key materials for potassium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 365-375.
[1] 钱江锋. 先进储钠电极材料及其电化学储能应用[D]. 武汉:武汉大学, 2012. QIAN Jiangfeng. Advanced Na-storage materials and their electrochemical energy storage applications[D]. Wuhan:Wuhan University, 2012. [2] CARMICHAEL R S. Physical properties of rocks and minerals[M]. Boca Raton:CRC press, 1989. [3] KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11):3431-3448. [4] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23):11636-11682. [5] 张宁, 刘永畅, 陈程成, 等. 钠离子电池电极材料研究进展[J]. 无机化学学报, 2015, 31(9):1739-1750. ZHANG Ning, LIU Yongchang, CHEN Chengcheng, et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9):1739-1750. [6] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica section A:Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5):751-767. [7] MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents:Part 3-Standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8):1129-1132. [8] HUNT C P, MOSKOWITZ B M, BANERJEE S K. Physical properties of rocks and minerals[M]. Boca Raton:CRC Press, 1989. [9] ZOU X, XIONG P, ZHAO J, et al. Recent research progress in non-aqueous potassium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(39):26495-26506. [10] JIAN Z, LUO W, JI X. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36):11566-11569. [11] XUE L, GAO H, ZHOU W, et al. Liquid K-Na alloy anode enables dendrite-free potassium batteries[J]. Advanced Materials, 2016, 28(43):9608-9612. [12] KOMABA S, HASEGAWA T, DAHBI M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60:172-175. [13] OKOSHI M, YAMADA Y, KOMABA S, et al. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents:a comparison with lithium, sodium, and magnesium ions[J]. Journal of the Electrochemical Society, 2017, 164(2):A54-A60. [14] BARPANDA P, YE T, NISHIMURA S, et al. Sodium iron pyrophosphate:A novel 3.0V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications, 2012, 24:116-119. [15] LU Y, WANG L, CHENG J, et al. Prussian blue:A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52):6544-6546. [16] YOU Y, WU X L, YIN Y X, et al. High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5):1643-1647. [17] YUE Y F, BINDER A J, GUO B K, et al. Mesoporous prussian blue analogues:Template-free synthesis and sodium-ion battery applications[J]. Angewandte Chemie, 2014, 126(12):3198-3201. [18] SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7):2658-2664. [19] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12):5421-5425. [20] PADIGI P, THIEBES J, SWAN M, et al. Prussian green:a high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166:32-39. [21] EFTEKHARI A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1):221-228. [22] XUE L, LI Y, GAO H, et al. Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6):2164-2167. [23] WU X, JIAN Z, LI Z, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77:54-57. [24] HE G, NAZAR L F. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5):1122-1127. [25] LI X, CHENG F, GUO B, et al. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries[J]. the Journal of Physical Chemistry B, 2005, 109(29):14017-14024. [26] MYUNG S T, KUMAGAI N, KOMABA S, et al. Effects of Al doping on the microstructure of LiCoO2 cathode materials[J]. Solid State Ionics, 2001, 139(1):47-56. [27] PENG Z S, WAN C R, JIANG C Y. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials[J]. Journal of Power Sources, 1998, 72(2):215-220. [28] BILLAUD J, CLÉMENT R J, ARMSTRONG A R, et al. β-NaMnO2:a high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(49):17243-17248. [29] SU D, WANG C, AHN H, et al. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance[J]. Chemistry-A European Journal, 2013, 19(33):10884-10889. [30] KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11):6211-6220. [31] FOUASSIER C, DELMAS C, HAGENMULLER P, Evolution structurale et proprietes physiques des phases AXMO2 (A=Na, K; M=Cr, Mn, Co)(x ≤ 1)[J]. Materials Research Bulletin, 1975, 10(6):443-449. [32] HIRONAKA Y, KUBOTA K, KOMABA S. P2-and P3-KxCoO2 as an electrochemical potassium intercalation host[J]. Chemical Communications, 2017, 53(26):3693-3696. [33] KIM H, KIM J C, BO S H, et al. K-ion batteries based on a P2-type K0.6CoO2 cathode[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201700098. [34] VAALMA C, GIFFIN G A, BUCHHOLZ D, et al. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black[J]. Journal of the Electrochemical Society, 2016, 163(7):A1295-A1299. [35] LIU C, LUO S, HUANG H, et al. K0.67Ni0.17Co0.17Mn0.66O2:A cathode material for potassium-ion battery[J]. Electrochemistry Communications, 2017, 82:150-154. [36] WANG X, XU X, NIU C, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano Letters, 2016, 17(1):544-550. [37] MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8):6552-6591. [38] BO S H, WANG F, JANSSEN Y, et al. Degradation and (de) lithiation processes in the high capacity battery material LiFeBO3[J]. Journal of Materials Chemistry, 2012, 22(18):8799-8809. [39] REYNAUD M, ATI M, MELOT B C, et al. Li2Fe(SO4)2 as a 3.83V positive electrode material[J]. Electrochemistry communications, 2012, 21:77-80. [40] JIAN Z, ZHAO L, PAN H, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications, 2012, 14(1):86-89. [41] ZHU C, SONG K, VAN AKEN P A, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix:An ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014, 14(4):2175-2180. [42] HAN J, LI G N, LIU F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries[J]. Chemical Communications, 2017, 53(11):1805-1808. [43] CHIHARA K, KATOGI A, KUBOTA K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries[J]. Chemical Communications, 2017, 53(37):5208-5211. [44] RECHAM N, ROUSSE G, SOUGRATI M T, et al. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes[J]. Chemistry of Materials, 2012, 24(22):4363-4370. [45] XING Z, JIAN Z, LUO W, et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries[J]. Energy Storage Materials, 2016, 2:63-68. [46] CHEN Y, LUO W, CARTER M, et al. Organic electrode for non-aqueous potassium-ion batteries[J]. Nano Energy, 2015, 18:205-211. [47] JIAN Z, LIANG Y, RODRÍGUEZ-PÉREZ I A, et al. Poly (anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71:5-8. [48] GE P, FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28:1172-1175. [49] DRESSELHAUS M S, DRESSELHAUS G. Intercalation compounds of graphite[J]. Advances in Physics, 1981, 30(2):139-326. [50] ZHAO J, ZOU X, ZHU Y, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44):8103-8110. [51] ZHANG W, JIANG X, WANG X, et al. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals[J]. Angewandte Chemie International Edition, 2017, 129(29):8435. [52] ZHAO X, XIONG P, MENG J, et al. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(36):19237-19244. [53] SHARE K, COHN A P, CARTER R, et al. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano, 2016, 10(10):9738-9744. [54] GONG S, WANG Q. Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability[J]. the Journal of Physical Chemistry C, 2017, 121(44):24418-24424. [55] JU Z, ZHANG S, XING Z, et al. Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties[J]. ACS Applied Materials & Interfaces, 2016, 8(32):20682-20690. [56] MA G, HUANG K, MA J S, et al. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(17):7854-7861. [57] ADAMS R A, SYU J M, ZHAO Y, et al. Binder-free N-and O-rich carbon nanofiber anodes for long cycle life K-ion batteries[J]. ACS Applied Materials & Interfaces, 2017. 9(21):17872-17881. [58] JIAN Z, XING Z, BOMMIER C, et al. Hard carbon microspheres:potassium-ion anode versus sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(3):doi:10.1002/aenm-201501874. [59] WEN Y, HE K, ZHU Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5:4033. [60] BOMMIER C, JI X. Recent development on anodes for Na-ion batteries[J]. Israel Journal of Chemistry, 2015, 55(5):486-507. [61] HAN J, XU M, NIU Y, et al. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries[J]. Chemical Communications, 2016, 52(75):11274-11276. [62] KISHORE B, VENKATESH G, MUNICHANDRAIAH N. K2Ti4O9:A promising anode material for potassium ion batteries[J]. Journal of The Electrochemical Society, 2016, 163(13):A2551-A2554. [63] HAN J, NIU Y, BAO S, et al. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries[J]. Chemical Communications, 2016, 52(78):11661-11664. [64] ER D, LI J, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. Acs Applied Materials & Interfaces, 2014, 6(14):11173-11179. [65] LIAN P, DONG Y, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40:1-8. [66] NAGUIB M, ADAMS R A, ZHAO Y, et al. Electrochemical performance of mxenes as K-ion battery anodes[J]. Chemical Communications, 2017, 53(51) 6883. [67] SANGSTER J, PELTON A D. The K-Sb (potassium-antimony) system[J]. Journal of Phase Equilibria, 1993, 14(4):510-514. [68] SONGSTER J, PELTON A D. The Na-Sb (sodium-antimony) system[J]. Journal of Phase Equilibria, 1993, 14(2):250-255. [69] MCCULLOCH W D, REN X, YU M, et al. Potassium-ion oxygen battery based on a high capacity antimony anode[J]. ACS Applied Materials & Interfaces, 2015, 7(47):26158-26166. [70] SULTANA I, RAMIREDDY T, RAHMAN M M, et al. Tin-based composite anodes for potassium-ion batteries[J]. Chemical Communications, 2016, 52(59):9279-9282. [71] WANG Q, ZHAO X, NI C, et al. Reaction and capacity fading mechanisms of tin nanoparticles in potassium-ion batteries[J]. the Journal of Physical Chemistry C, 2017,121(23):12652-12657. [72] ZHANG W, MAO J, LI S, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. Journal of the American Chemical Society, 2017, 139(9):3316-3319. [73] SANGSTER J M. KP (potassium-phosphorus) system[J]. Journal of Phase Equilibria and Diffusion, 2010, 31(1):68-72. [74] SULTANA I, RAHMAN M M, RAMIREDDY T, et al. High capacity potassium-ion battery anodes based on black phosphorus[J]. Journal of Materials Chemistry A, 2017, 5(45):23506-23512. [75] HU Z, ZHOU C, RAMANUJAM P R, et al. Rapid reversible electromigration of intercalated K ions within individual MoO3 nanobundle[J]. Journal of Applied Physics, 2013, 113(2):024311. [76] SULTANA I, RAHMAN M M, MATETI S, et al. K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process[J]. Nanoscale, 2017, 9(10):3646-3654. [77] REN X, ZHAO Q, MCCULLOCH W D, et al. MoS2 as a long-life host material for potassium ion intercalation[J]. Nano Research, 2017, 10(4):1313-1321. [78] LAKSHMI V, CHEN Y, MIKHAYLOV A A, et al. Nanocrystalline SnS2 coated onto reduced graphene oxide:Demonstrating feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries[J]. Chemical Communications, 2017, 53(59):8272. [79] DENG Q, PEI J, FAN C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries[J]. Nano Energy, 2017, 33:350-355. [80] LEI K, LI F, MU C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes[J]. Energy & Environmental Science, 2017, 10(2):552-557. [81] BIE X, KUBOTA K, HOSAKA T, et al. A novel K-ion battery:Hexacyanoferrate (Ⅱ)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9):4325-4330. |
[1] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[4] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[5] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[6] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[7] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[8] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[9] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[10] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[11] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[12] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[13] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[14] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[15] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||