Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 1182-1202.doi: 10.12028/j.issn.2095-4239.2018.0100
Previous Articles Next Articles
LIU Cheng1, HAN Xinpeng1, WANG Ruying2, LI Yuetao2, SUN Jie1
Received:
2018-06-20
Revised:
2018-07-14
Online:
2018-11-01
Published:
2018-08-03
Contact:
10.12028/j.issn.2095-4239.2018.0100
CLC Number:
LIU Cheng, HAN Xinpeng, WANG Ruying, LI Yuetao, SUN Jie. The design and application of phosphorus-carbon binary topology in energy storage[J]. Energy Storage Science and Technology, 2018, 7(6): 1182-1202.
[1] IBRAHIM H, ILINCA A, PERRON J. Energy storage systems-Characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12 (5):1221-1250. [2] 张华民. 储能与液流电池技术[J]. 储能科学与技术, 2012, 1 (1):58-63. ZHANG Huamin. Development and application status of energy storage technologies[J]. Energy Storage Science and Technology, 2012, 1 (1):58-63. [3] LI Zhaohuai, HE Qiu, HE Liang, et al. Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5 (8):4183-4189. [4] CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3 (1):31-35. [5] PARK H S, KIM C E, KIM C H, et al. A modularized charge equalizer for an HEV lithium-ion battery string[J]. IEEE Transactions on Industrial Electronics, 2009, 56 (5):1464-1476. [6] ZHAO K J, PHARR M, VLASSAK J J, et al. Fracture of electrodes in lithium-ion batteries caused by fast charging[J]. Journal of Applied Physics, 2010, 108 (7):73517. [7] KIM Y, HA K H, OH S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2014, 20 (38):11980-11992. [8] SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23 (8):947-958. [9] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5 (3):5884-5901. [10] ZHANG Yanyan, RUI Xianhong, TANG Yuxin, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6 (10):1502409. [11] LI Weiwei, CHEN Shimou, YU Jia, et al. In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries[J]. Green Energy & Environment, 2016, 1 (1):91-99. [12] SANGSTER J. C-Na (carbon-sodium) system[J]. Journal of Phase Equilibria and Diffusion, 2007, 28 (6):571-579. [13] KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21 (20):3859-3867. [14] PAN Yue, ZHANG Yuzi, PARIMALAM B S, et al. Investigation of the solid electrolyte interphase on hard carbon electrode for sodium ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 799:181-186. [15] IRISARRI E, PONROUCH A, PALACIN M R. Hard carbon negative electrode materials for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162 (14):A2476-A2482. [16] PONROUCH A, GONI A R, PALACIN M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27:85-88. [17] BALOGUN M S, LUO Yang, QIU Weitao, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98:162-178. [18] XU Guiliang, CHEN Zonghai, ZHONG Guiming, et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries[J]. Nano Letters, 2016, 16 (6):3955-3965. [19] CHEVRIER V L, CEDER G. Challenges for Na-ion negative electrodes[J]. Journal of the Electrochemical Society, 2011, 158 (9):A1011-A1014. [20] QIAN Jiangfeng, WU Xianyong, CAO Yuliang, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie, 2013, 125 (17):4731-4734. [21] 中华人民共和国科学技术部. 电动汽车动力电池能量密度达到260Wh/kg.[EB/OL]. 2017-04-13. http://www.most.gov.cn/kjbgz/201704/t20170413_132384.htm [22] SCHUSTER J, HE G, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie, 2012, 124 (15):3651-3655. [23] WANG Zhiyu, DONG Yanfeng, LI Hongjiang, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5:5002. [24] SUN J, SUN Y M, PASTA M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries[J]. Advanced Materials, 2016, 28 (44):9797-9803. [25] LI L, CHEN L, MUKHERJEE S, et al. Phosphorene as a polysulfide Immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29 (2):1602734. [26] QIN Xinyu, YAN Bingyi, YU Jia, et al. Phosphorus-based materials for high-performance rechargeable batteries[J]. Inorganic Chemistry Frontiers, 2017, 4 (9):1424-1444. [27] SIMON A, BORRMANN H, HORAKH J. On the polymorphism of white phosphorus[J]. Chemische Berichte, 1997, 130 (9):1235-1240. [28] AYKOL M, DOAK J W, WOLVERTON C. Phosphorus allotropes:Stability of black versus red phosphorus re-examined by means of the Van der Waals inclusive density functional method[J]. Physical Review B, 2017, 95 (21):214115. [29] ZENG Guang, HU Xiang, ZHOU Baolong, et al. Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries[J]. Nanoscale, 2017, 9 (38):14722-14729. [30] LI Weihan, HU Shuhe, LUO Xiangyu, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery[J]. Advanced Materials, 2017, 29 (16):1605820. [31] RUCK M, HOPPE D, WAHL B, et al. Fibrous red phosphorus[J]. Angewandte Chemie International Edition, 2005, 44 (46):7616-7619. [32] BACHHUBER F, APPEN V J, DRONSKOWSKI R, et al. Van der Waals interactions in selected allotropes of phosphorus[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2015, 230 (2):107-115. [33] YANG Zhibin, HAO Jianhua, YUAN Shuoguo, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J]. Advanced Materials, 2015, 27 (25):3748-3754. [34] LEI Wanying, LIU Gang, ZHANG Jin, et al. Black phosphorus nanostructures:Recent advances in hybridization, doping and functionalization[J]. Chemical Society Reviews, 2017, 46:3492-3509. [35] LI Wenwu, LI Huiqiao, LU Zhijuan, et al. Layered phosphorus-like GeP5:A promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries[J]. Energy & Environmental Science, 2015, 8 (12):3629-3636. [36] ZHAO Yuetao, WANG Huaiyu, HUANG Hao, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie, 2016, 128 (16):5087-5091. [37] GUSMAO R, SOFER Z, PUMERA M. Black phosphorus rediscovered:From bulk to monolayer[J]. Angewandte Chemie, 2017, 129 (28):8164-8185. [38] SUN Liqun, LI Mingjuan, SUN Kai, et al. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116 (28):14772-14779. [39] QIAN Jiangfeng, WU Xiangyong, CAO Yuliang, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie, 2013, 125 (17):4731-4734. [40] DAHHBI M, YABUUCHI N, KUBOTA K, et al. Negative electrodes for Na-ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16 (29):15007-15028. [41] HEMBRAM K P S S, JUNG H, YEO B C, et al. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries[J]. Physical Chemistry Chemical Physics, 2016, 18 (31):21391-21397. [42] YU Zhaoxin, SONG Jiangxuan, GORDIN M L, et al. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability[J]. Advanced Science, 2015, 2 (1/2):1400020. [43] SUN Jie, ZHENG Guangyuan, LEE H W, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Letters, 2014, 14 (8):4573-4580. [44] SUN J, LEE H W, PASTA M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10 (11):980-985. [45] ZHOU Jianbin, LIU Xianyu, CAI Wenlong, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries[J]. Advanced Materials, 2017, 29 (29):1700214. [46] CHANG W C, TSENG K W, TUAN H Y. Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2017, 17 (2):1240-1247. [47] WANG Li, HE Xiangming, LI Jianjun, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angewandte Chemie International Edition, 2012, 51 (36):9034-9037. [48] LI Weifeng, YANG Yanmei, ZHANG Gang, et al. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery[J]. Nano Letters, 2015, 15 (3):1691-1697. [49] HEMBRAM K, JUNG H, YEO B C, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119 (27):15041-15046. [50] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10 (9):682. [51] YAMANE H, SHIBATA M, SHIMANE Y, et al. Crystal structure of a superionic conductor, Li7P3S11[J]. Solid State Ionics, 2007, 178 (15/18):1163-1167. [52] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14 (10):1026-1031. [53] ZHENG Honghe, QU Qunting, ZHANG Li, et al. Hard carbon:A promising lithium-ion battery anode for high temperature applications with ionic electrolyte[J]. RSC Advances, 2012, 2 (11):4904-4912. [54] ZHU Yujie, WEN Yang, FAN Xiulin, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9 (3):3254-3264. [55] LIU Yihang, ZHANG Anyi, SHEN Chenfei, et al. Red phosphorus nano-dots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries[J]. ACS Nano, 2017:11 (6):5530-5537. [56] SONG Jiangxuan, YU Zhaoxin, GORDIN M L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J]. Nano Letters, 2014, 14 (11):6329-6335. [57] PEI Longkai, ZHAO Qing, CHEN Chengcheng, et al. Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries[J]. Chem Electro Chem, 2015, 2 (11):1652-1655. [58] KIM Y J, PARK Y, CHOI A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials, 2013, 25 (22):3045-3049. [59] LI Weihan, YANG Zhenzhong, JIANG Yu, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries[J]. Carbon, 2014, 78:455-462. [60] YUAN Demao, CHENG Jianli, QU Guoxing, et al. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 301:131-137. [61] LI Weihan, YANG Zhenzhong, LI Minsi, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity[J]. Nano Letters, 2016, 16 (3):1546-1553. [62] SUN J, LEE H W, PASTA M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries[J]. Energy Storage Materials, 2016, 4:130-136. [63] LEE S W, YABUUCHI N, GALLANT B M, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5 (7):531-537. [64] WANG W, KUMTA P N. Nanostructured hybrid silicon/carbon nanotube heterostructures:Reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4 (4):2233-2241. [65] WANG Yong, WU Minghong, JIAO Zheng, et al. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage[J]. Chemistry of Materials, 2009, 21 (14):3210-3215. [66] LI Weijie, CHOU Shulei, WANG Jiazhao, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage[J]. Nano Letters, 2013, 13 (11):5480-5484. [67] SUBRAMANIYAM C M, TAI Z X, MAHMOOD N, et al. Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5 (5):1925-1929. [68] GAO Hong, ZHOU Tengfei, ZHENG Yang, et al. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6 (21):1601037. [69] BAI Aojun, WANG Li, LI Jiaoyang, et al. Composite of graphite/phosphorus as anode for lithium-ion batteries[J]. Journal of Power Sources, 2015, 289:100-104. [70] HU C, YOUN B D, CHUNG J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J]. Applied Energy, 2012, 92:694-704. [71] LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288. [72] GUO G C, WEI X L, WANG D, et al. Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries[J]. Journal of Materials Chemistry A, 2015, 3 (21):11246-11252. [73] MAYO M, GRIFFITH K J, PICKARD C J, et al. Ab initio study of phosphorus anodes for lithium-and sodium-ion batteries[J]. Chemistry of Materials, 2016, 28 (7):2011-2021. [74] CHEN Long, ZHOU Guangmin, LIU Zhibo, et al. Scalable an exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery[J]. Advanced Materials, 2016, 28 (3):510-517. [75] PENG Bo, XU Yaolin, LIU Kai, et al. A high performance and low cost sodium ion anode based on a facile black phosphorus-carbon nanocomposite[J]. ChemElectroChem, 2017, 4 (9):2140-2144. [76] PARK C M, SOHN H J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007, 19 (18):2465-2468. [77] LIU Hanwen, TAO Li, ZHANG Yiqiong, et al. Bridging covalently functionalized black phosphorus on graphene for high performance sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9:36849-36856. [78] LIU Hanwen, ZOU Yuqin, TAO Li, et al. Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery[J]. Small, 2017, 13 (33):1700758. [79] HOU Tingzheng, CHEN Xiang, PENG Hongjie, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12 (24):3283-3291. [80] ZHANG Jun, SHI Ye, DING Yu, et al. A conductive molecular framework derived Li2S/N, P-Co doped carbon cathode for advanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7 (14):1602876. [81] ZHAO Jingxiang, YANG Yongan, KATIYAR R S, et al. Phosphorene as a promising anchoring material for lithium-sulfur batteries:A computational study[J]. Journal of Materials Chemistry A, 2016, 4 (16):6124-6130. [82] HAO Chunxue, YANG Bingchao, WEN Fusheng, et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes[J]. Advanced Materials, 2016, 28 (16):3194-3201. [83] CHEN Xinhang, XU Guanghua, REN Xiaohui, et al. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5 (14):6581-6588. [84] XIAO Han, WU Zhongshuai, CHEN Long, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACS Nano, 2017, 11 (7):7284-7292. [85] SINGH N, ARTTHUR T S, LING C, et al. A high energy-density tin anode for rechargeable magnesium-ion batteries[J]. Chemical Communications, 2013, 49 (2):149-151. [86] TUTUSAUS O, MOHTADI R, ARTHUR T S, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries[J]. Angewandte Chemie International Edition, 2015, 54 (27):7900-7904. [87] HUIE M M, BOCK D C, TAKEUCHI E S, et al. Cathode materials for magnesium and magnesium-ion based batteries[J]. Coordination Chemistry Reviews, 2015, 287:15-27. [88] BANERJEE S, PATI S K. Anodic performance of black phosphorus in magnesium-ion batteries:The significance of Mg-P bond-synergy[J]. Chemical Communications, 2016, 52 (54):8381-8384. [89] JIN W, WANG Z G, FU Y Q. Monolayer black phosphorus as potential anode materials for Mg-ion batteries[J]. Journal of Materials Science, 2016, 51 (15):7355-7360. [90] YANG Ying, GAO Jing, ZHANG Zheng, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells[J]. Advanced Materials, 2016, 28 (40):8937-8944. [91] DAI Jun, ZENG Xiaocheng. Bilayer phosphorene:Effect of stacking order on bandgap and its potential applications in thin-film solar cells[J]. The Journal of Physical Chemistry Letters, 2014, 5 (7):1289-1293. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[14] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[15] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||