Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 1060-1068.doi: 10.12028/j.issn.2095-4239.2018.0157
Previous Articles Next Articles
YANG Huijun1, FU Jing1, CHEN Jiahang1, GUO Cheng1, GUO Rui2, XIE Jingying2, WANG Jiulin1
Received:
2018-08-28
Revised:
2018-09-10
Online:
2018-11-01
Published:
2018-09-13
Contact:
10.12028/j.issn.2095-4239.2018.0157
CLC Number:
YANG Huijun, FU Jing, CHEN Jiahang, GUO Cheng, GUO Rui, XIE Jingying, WANG Jiulin. Research progress of safe organic electrolytes for lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1060-1068.
[1] SCROSATI B, HASSOUN J, SUN Y K. Lithium-ion batteries. A look into the future[J]. Energy Environmental Science, 2011, 4 (9):3287-3295. [2] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414 (6861):359-367. [3] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114 (23):11751-11787. [4] PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1 (9):16132-16142. [5] PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46 (17):5237-5288. [6] KUMAR R, LIU J, HWANG J Y, et al. Recent research trends in Li-S batteries[J]. Journal Materials Chemistry A, 2018, 6 (25):11582-11605. [7] YANG X, LI X, ADAIR K, et al. Structural design of lithium-sulfur batteries:From fundamental research to practical application[J]. Electrochemical Energy Reviews, 2018, doi.org/10.1007/s41918-018-0010-3. [8] FANG R, ZHAO S, SUN Z, et al. More reliable lithium-sulfur batteries:Status, solutions and prospects[J]. Advanced Materials, 2017, 29 (48):1606823-1606847. [9] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7 (24):1700260-1700313. [10] 王维坤, 王安邦, 金朝庆, 等. 高性能锂硫电池正极材料研究进展及构建策略[J]. 储能科学与技术, 2017, 6 (3):331-344. WANG Weikun, WANG Anbang, JIN Zhaoqing, et al. Development and strategy for cathode materials of advanced lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6 (3):331-344. [11] CHEN W, LEI T, WU C, et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8 (10):1702348-1702371. [12] SUN Y Z, HUANG J Q, ZHAO C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China Chemistry, 2017, 60 (12):1508-1526. [13] XU K, DING M S, ZHANG S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society, 2002, 149 (5):A622-A626. [14] ZHANG Z, FOUCHARD D, REA J R. Differential scanning calorimetry material studies:Implications for the safety of lithium-ion cells[J]. Journal Power Sources, 1998, 70 (1):16-20. [15] HESS S, WOHLFAHRT-MEHRENS M, WACHTLER M. Flammability of Li-ion battery electrolytes:Flash point and self-extinguishing time measurements[J]. Journal of the Electrochemical Society, 2015, 162 (2):A3084-A3097. [16] WANG J, HE Y S, YANG J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials, 2015, 27 (3):569-575. [17] WANG J L, YANG J, XIE J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4 (6):499-502. [18] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8 (6):500-506. [19] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie, 2011, 50 (26):5904-5908. [20] 谷穗, 靳俊, 卢洋, 等. 锂硫电池的穿梭效应与抑制[J]. 储能科学与技术, 2017, 6 (5):1026-1040. GU Sui, JIN Jun, LU Yang, et al. Recent progress in research on the shuttle effect and its suppression for lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6 (5):1026-1040. [21] . 金朝庆, 谢凯, 洪晓斌. 锂硫电池电解质研究进展[J]. 化学学报, 2014, 72 (1):11-20. JIN Z Q, XIE K, HONG X B. Review of electrolyte for lithium sulfur battery[J]. Acta Chimica Sinica, 2014, 72 (1):11-20. [22] WANG J, YAO Z, MONROE C W, et al. Carbonyl-beta-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries[J]. Advanced Functional Materials, 2013, 23 (9):1194-1201. [23] LI Q, YANG H, XIE L, et al. Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries[J]. Chemical Communications, 2016, 52 (92):13479-13482. [24] XU Z, WANG J, YANG J, et al. Enhanced performance of a lithium-sulfur battery using a carbonate-based electrolyte[J]. Angewandte Chemie, 2016, 55 (35):10372-10375. [25] CHEN Z, ZHOU J, GUO Y, et al. A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery[J]. Electrochimica Acta, 2018, 8 (282):555-562. [26] YANG H, NAVEED A, LI Q, et al. Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode[J]. Energy Storage Materials, 2018, 15:299-307. [27] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114 (23):11503-11618. [28] QU C, CHEN Y, YANG X, et al. LiNO3-free electrolyte for Li-S battery:A solvent of choice with low Ksp of polysulfide and low dendrite of lithium[J]. Nano Energy, 2017, 39:262-272. [29] SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4:1481-1489. [30] AZIMI N, WENG W, TAKOUDIS C, et al. Improved performance of lithium-sulfur battery with fluorinated electrolyte[J]. Electrochemistry Communications, 2013, 37:96-99. [31] SHIN M, WU H L, NARAYANAN B, et al. Effect of the hydrofluoroether cosolvent structure in acetonitrile-based solvate electrolytes on the Li+ solvation structure and Li-S battery performance[J]. ACS Applied Materials & Interfaces, 2017, 9 (45):39357-39370. [32] GORDIN M L, DAI F, CHEN S, et al. Bis (2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6 (11):8006-8010. [33] CHEN S, YU Z, GORDIN M L, et al. A fluorinated ether electrolyte enabled high performance prelithiated graphite/sulfur batteries[J]. ACS Applied Materials & Interfaces, 2017, 9 (8):6959-6966. [34] CUISINIER M, CABELGUEN P E, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy Environmental Science, 2014, 7 (8):2697-2705. [35] LI Q, YANG H, NAVEED A, et al. Duplex component additive of tris (trimethylsilyl) phosphite-vinylene carbonate for lithium sulfur batteries[J]. Energy Storage Materials, 2018, 14:75-81. [36] KIM H M, HWANG J Y, AURBACH D, et al. Electrochemical properties of sulfurized-polyacrylonitrile cathode for lithium-sulfur batteries:Effect of polyacrylic acid binder and fluoroethylene carbonate additive[J]. Journal of Physical Chemistry Letters, 2017, 8 (21):5331-5337. [37] LIN F, WANG J, JIA H, et al. Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials[J]. Journal Power Sources, 2013, 223:18-22. [38] JIA H, WANG J, LIN F, et al. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes[J]. Chemical Communications, 2014, 50 (53):7011-7013. [39] 沈旺, 雷智鸿, 谢李生, 等. 多功能添加剂PFPN对可充锂硫电池的影响[J]. 储能科学与技术, 2016, 5 (4):397-403. SHEN Wang, LEI Zhihong, XIE Lisheng, et al. Multi-functional additive PFPN for rechargeable lithium sulfur battery with composite cathode materials[J]. Energy Storage Science and Technology, 2016, 5 (4):397-403. [40] YANG H, LI Q, GUO C, et al. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode[J]. Chemical Communications, 2018, 54 (33):4132-4135. [41] WANG J, LIN F, JIA H, et al. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode[J]. Angewandte Chemie, 2014, 53 (38):10099-10104. [42] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries:A review[J]. Chemical Reviews, 2017, 117 (15):10403-10473. [43] YANG H, GUO C, NAVEED A, et al. Recent progress and perspective on lithium metal anode protection[J]. Energy Storage Materials, 2018, 14:199-221. [44] 马强, 戚兴国, 容晓晖, 等. 新型固态聚合物电解质在锂硫电池中的性能研究[J]. 储能科学与技术, 2016, 5 (5):713-718. MA Qiang, QI Xinguo, RONG Xiaohui, et al. Novel solid polymer electrolytes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2016, 5 (5):713-718. [45] . 石凯, 安德成, 贺艳兵, 等. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6 (3):479-492. SHI Kai, AN Decheng, HE Yanbing, et al. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes[J]. Energy Storage Science and Technology, 2017, 6 (3):479-492. [46] 孙滢智, 黄佳琦, 张学强, 等. 基于硫化物固态电解质的固态锂硫电池研究进展[J]. 储能科学与技术, 2017, 6 (3):464-478. SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, et al. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes[J]. Energy Storage Science and Technology, 2017, 6 (3):464-478. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[3] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[4] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[5] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[6] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[7] | Zhuoheng XIE, Ziyang WANG, Gang ZHANG, Zhenning GU, Xiaolong SHI, Bin YAO. Experimental study on fire extinguishing of large-capacity ternary lithium-ion battery by perfluorohexanone and water mist fire extinguishing device [J]. Energy Storage Science and Technology, 2022, 11(2): 652-659. |
[8] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
[9] | Ke LI, Juyi MU, Yi JIN, Jiajia XU, Pengjie LIU, Qingsong WANG, Huang LI. Fire risk of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. |
[10] | Huaibin WANG, Yang LI, Qinzheng WANG, Zhiming DU, Xuning FENG. Mechanisms causing thermal runaway-related electric vehicle accidents and accident investigation strategies [J]. Energy Storage Science and Technology, 2021, 10(2): 544-557. |
[11] | Wenxin MEI, Qiangling DUAN, Qingshan WANG, Yan LI, Xin LI, Jinda ZHU, Qingsong WANG. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures [J]. Energy Storage Science and Technology, 2021, 10(1): 202-209. |
[12] | Li WANG, Leqiong XIE, Guangyu TIAN, Xiangming HE. Safety accidents of Li-ion batteries: Reliability issues or safety issues [J]. Energy Storage Science and Technology, 2021, 10(1): 1-6. |
[13] | Shouding LI, Yan LI, Jie TIAN, Yuming ZHAO, Min YANG, Jun LUO, Yuancheng CAO, Shijie CHENG. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications [J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. |
[14] | Dong WANG, Lili ZHENG, Xichao LI, Guangchao DU, Yan FENG, Longzhou JIA, Zuoqiang DAI. Thermal safety of ternary soft pack power lithium battery [J]. Energy Storage Science and Technology, 2020, 9(5): 1517-1525. |
[15] | Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress [J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||