Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 1261-1270.doi: 10.12028/j.issn.2095-4239.2018.0161
WANG Li1, FENG Xuning1, XUE Gang2, LI Maogang2, HU Jianyao3, TIAN Guangyu4, HE Xiangming1,4
Received:
2018-08-23
Revised:
2018-09-29
Online:
2018-11-01
Published:
2018-10-19
Contact:
10.12028/j.issn.2095-4239.2018.0161
CLC Number:
WANG Li, FENG Xuning, XUE Gang, LI Maogang, HU Jianyao, TIAN Guangyu, HE Xiangming. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270.
[1] 方谋, 赵骁, 陈敬波, 等. 从波音787电池事故分析大型动力电池组的安全性[J]. 储能科学与技术, 2014, 3 (1):42-46. FANG Mou, ZHAO Xiao, CHEN Jingbo, et al. A case study of Japan airlines B-787 battery fire[J]. Energy Storage Science and Technology, 2014, 3 (1):42-46. [2] 方谋, 赵骁, 王要武, 等. 隔膜和电解质对电动车电池模块安全性影响[J]. 新材料产业, 2014, 2:48-52. FANG Mou, ZHAO Xiao, WANG Yaowu, et al. The effect of diaphragm and electrolyte on the safety of electric vehicle battery modules[J]. Advanced Material Industry, 2014, 2:48-52. [3] 方谋, 赵骁, 李建军, 等. 电动车用锂离子蓄电池模块的安全性问题[J]. 新材料产业, 2014, 3:45-48. FANG Mou, ZHAO Xiao, LI Jianjun, et al. Safety of lithium ion battery modules for electric vehicles[J]. Advanced Material Industry, 2014, 3:45-48. [4] 赵骁, 方谋, 王要武, 等. 电动车用锂离子蓄电池模块安全性之正负极材料[J]. 新材料产业, 2014, 5:35-39. ZHAO Xiao, FANG Mou, WANG Yaowu, et al. Safety of lithium ion battery module for electric vehicle:anode and cathode materials[J]. Advanced Material Industry, 2014, 5:35-39. [5] 方谋, 赵骁, 王要武, 等. 电动车用锂离子蓄电池模块安全性之热失控[J]. 新材料产业, 2013, 8:48-51. FANG Mou, ZHAO Liao, WANG Yaowu, et al. Safety of lithium ion battery module for electric vehicle:thermal runaway[J]. Advanced Material Industry, 2013, 8:48-51. [6] 方谋, 赵骁, 李建军, 等. 电动车用锂离子蓄电池模块安全性之内短路[J]. 新材料产业, 2013, 10:26-29. FANG Mou, ZHAO Xiao, LI Jianjun, et al. Safety of lithium ion battery module for electric vehicle:Internal short-circuit[J]. Advanced Material Industry, 2013, 10:26-28. [7] 张干, 王莉, 李建军, 等. 大型动力锂离子电池及其热模型发展概况[J]. 新材料产业, 2016, 9:36-40. ZHANG Gan, WANG Li, LI Jianjun, et al. Development of large power lithium-ion batteries and thermal models[J]. Advanced Material Industry, 2016, 9:36-40. [8] 王浩, 杨聚平, 王莉, 等. 锂离子电池的安全性问题[J]. 新材料产业, 2012, 9:88-94. WANG Hao, YANG Juping, WANG Li, et al. Safety of lithium ion batteries[J]. Advanced Material Industry, 2012, 9:88-94. [9] 何向明, 冯旭宁, 欧阳明高. 车用锂离子动力电池系统的安全性[J]. 科技导报, 2016, 34 (6):32-38. HE Xiangming, FENG Xuning, OUYANG Minggao. Safety of vehicle lithium ion power battery system, science and technology review[J]. Science & Technology Review, 2016, 34 (6):32-38. [10] LIU Xiang, REN Dongsheng, HSU Hungjen, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2:1-18. [11] REN Dongsheng, LIU Xiang, FENG Xuning, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228:633-644. [12] FENG Xuning, HE Xiangming, LU Languang, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165 (2):A155-A167. [13] FENG Xuning, PAN Yue, HE Xiangming, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18:26-39. [14] ZHENG Siqi, WANG Li, FENG Xuning, et al. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries[J]. Journal of Power Sources, 2018, 378:527-536. [15] FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267. [16] REN Dongsheng, FENG Xuning, LU Languang, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364:328-340. [17] FENG Xuning, LU Languang, OUYANG Minggao, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115:194-208. [18] OUYANG Minggao, FENG Xuning, HAN Xuebing, et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery[J]. Applied Energy, 2016, 165:48-59. [19] WU Peng, JAN R, FENG Xuning, et al. Thermal runaway propagation within module consists of large format Li-ion cells[C]//Proceedings of SAE-China Congress 2015:Selected Papers, Volume 364 of the series Lecture Notes in Electrical Engineering, 2015:117-123. [20] OUYANG Minggao, ZHANG Mingxuan, FENG Xuning, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294:272-283. [21] FENG Xuning, HE Xiangming, OUYANG Minggao, et al. Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154:74-91. [22] FENG Xuning, SUN Jing, OUYANG Minggao, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275:261-273. [23] FENG Xuning, SUN Jing, OUYANG Minggao, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272:457-467. [24] FENG Xuning, FANG Mou, HE Xiangming, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255:294-301. [25] ZHANG Mingxuan, DU Jiuyu, LIU Lishuo, et al. Internal short circuit trigger method for lithium-ion battery based on shape memory alloy[J]. Journal of the Electrochemical Society, 2017, 164 (13):A3038-A3044. [26] ZHANG Mingxuan, LIU Lishuo, ANNA S, et al. Fusing phenomenon of lithium-ion battery internal short circuit[J]. Journal of the Electrochemical Society, 2017, 64 (12):A2738-A2745. [27] 谢潇怡, 王莉, 何向明, 等. 锂离子动力电池安全性问题影响因素[J]. 储能科学与技术, 2017, 6 (1):43-51. XIE Xiaoyi, WANG Li, HE Xiangming, et al. The safety influencing factors of lithium batteries[J]. Energy Storage Science and Technology, 2017, 6 (1):43-51. [28] 金慧芬, 王荣, 高俊奎. 商业化锂离子电池的热稳定性研究[J]. 电源技术, 2007 (1):23-25+33. JIN Huifen, WANG Rong, GAO Junkui. Study on thermal stability of commercial Li-ion battery[J]. Chinese Journal of Power Sources, 2007 (1):23-25+33. [29] 李士俊, 金慧芬, 高俊奎. 锂离子电池用钴系正极材料热稳定性研究[J]. 电源技术, 2008, 32 (12):848-850. LI Shijun, JIN Huifen, GAO Junkui. Study on the thermal stability of cobalt-based positive materials for Li-ion cell[J]. Chinese Journal of Power Sources, 2008, 32 (12):848-850. [30] 王青松, 孙金华, 何理. 锂离子电池安全性特点及热模型研究[J]. 中国安全生产科学技术, 2005 (3):19-21. WANG Qingsong, SUN Jinhua, HE Li. Research on the safety characteristics and thermal model for lithium-ion batteries[J]. Journal of Safety andTechnology, 2005 (3):19-21. [31] 罗英, 吕桃林, 张熠霄, 等. 老化对磷酸铁锂电池在绝热条件下的产热影响[J]. 储能科学与技术, 2017, 6 (2):237-242. LUO Ying, LV Taolin, ZHANG Yixiao, et al. Influence of aging on the heat-release of the lithium ion phosphate battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2017, 6 (2):237-242. [32] 王莉, 孙敏敏, 何向明. 锂离子电池安全性设计浅析[J]. 电池工业, 2017, 21 (2):36-39. WANG Li, SUN Minmin, HE Xiangming. A brief review of the design of safety characteristics of Li-ion batteries[J]. Chinese Battery Industry, 2017, 21 (2):36-39. [33] 刘恒伟, 李建军, 谢潇怡, 等. 大尺寸三元锂离子动力电池过充电安全性研究[J]. 新材料产业, 2015, 3:48-52. LIU Hengwei, LI Jianjun, XIE Xiaoyi, et al. Study on overcharge safety of large size lithium ion power battery[J]. Advanced Material Industry, 2015, 3:48-52. [34] 魏本建, 鲁怀敏, 朱红萍, 等. 软包装锂离子动力电池生热速率测算方法研究[J]. 电源技术, 2017, 41 (11):1550-1552+1568. WEI Benjian, LU Huaimin, ZHU Hongping, et al. Study on measuring and calculating method for heat generation rate of soft-packed lithium-ion power battery[J]. Chinese Journal of Power Sources, 2017, 41 (11):1550-1552+1568. [35] 王莉, 李建军, 高剑, 何向明. 钴酸锂正极锂离子电池的过充电安全性[J]. 电池, 2012, 42 (6):299-301. WANG Li, LI Jianjun, GAO Jian, HE Xiangming. Overcharge safety of Li-ion battery with lithium cobalt oxide cathode[J]. Battery Bimonthly, 2012, 42 (6):299-301. [36] 李建军, 王莉, 高剑, 等. 动力锂离子电池的安全性控制策略及其试验验证[J]. 汽车安全与节能学报, 2012, 3 (2):151-157. LI Jianjun, WANG Li, GAO Jian, et al. Safety control strategy of large format Li-ion batteries and test verification[J]. Journal of Automotive Safety and Energy, 2012, 3 (2):151-157. [37] 王莉, 李建军, 何向明. 动力锂离子电池安全性热失控控制策略[C]//第16届全国固态离子学学术会议暨下一代能源材料与技术国际研讨会论文摘要集, 2012:1. WANG Li, LI Jianjun, HE Xiangming. Thermal runaway control strategy for power lithium-ion battery safety[C]//Abstracts of Papers from the 16th National Symposium on Solid-state Ionics and the International Symposium on Next Generation Energy Materials and Technology, 2012:1. [38] 李建军, 何向明, 王莉, 等. 水下航行器用高安全性动力电池研制[C]//第29届全国化学与物理电源学术年会论文集, 2011:1. LI Jianjun, HE Xiangming, WANG Li, REN Jianguo, LIU Zhixiang. Development of high safety power batteries for underwater vehicles[C]//Proceedings of the 29th Annual Conference on Chemical and Physical Power Sources, 2011:1. [39] 李慧芳, 李飞. 锂离子电池的可逆及不可逆产热测试[J]. 电源技术, 2016, 40 (11):2128-2131. LI Huifang, LI Fei. Determination of reversible and irreversible heat production of cylindrical Li-ion cell during charge and discharge process[J]. Chinese Journal of Power Sources, 2016, 40 (11):2128-2131. [40] 张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43 (7):2221-2228. ZHANG Mingjie, YANG Kai, DUAN Shuning, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltage Engineering, 2017, 43 (7):2221-2228. [41] 陈俊燕, MARTYN Ottaway, STELIOS More. 加速量热仪对锂离子蓄电池安全性能的评估[J]. 电源技术, 2007 (1):19-22. CHEN Junyan, MARTYN Ottaway, STELIOS More. Evaluation on safety performance of Lithium ion battery by Accelerating rate calorimeter[J]. Chinese Journal of Power Sources, 2007 (1):19-22. [42] 傅智敏, 黄金印, 钱新明, 等. 加速量热仪在物质热稳定性研究中的应用[J]. 火灾科学, 2001, 10 (3):149-153. FU Zhimin, HUANG Jinyin, QIAN Xinming, et al. The research of thermal stability of chemicals by accelerating rate calorimeter[J]. Fire Safety Science, 2001, 10 (3):149-153. [43] 钱冠男, 王莉, 杨聚平, 等. 双马来酰亚胺及其聚合物在锂离子电池中应用的研究进展[J].科学通报, 2013, 58 (32):3239-3245. QIAN Guannan, WANG Li, YANG Juping, et al. Advances in the application of bismaleimide and its polymers in li-ion batteries[J]. Chinese Science Bulletin, 2013, 58 (32):3239-3245. [44] 王丹, 高剑, 李建军, 等. LiCoO2表面原位包覆AlPO4及性能研究[J]. 电源技术, 2012, 3:310-312. WANG Dan, GAO Jian, LI Jianjun, et al. In situ-coating LiCoO2 with AlPO4 and its performance[J]. Chinese Journal of Power Sources, 2012, 3:310-312. [45] 刘榛, 尚玉明, 王莉, 何向明. 环三磷腈在锂离子电池中的应用研究现状[J]. 储能科学与技术, 2016, 5 (2):181-187. LIU Zhen, SHANG Yuming, WANG Li, HE Xiangming. Research progress of cycle phosphazenes applied in lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5 (2):181-187. [46] 周冉冉, 何向明, 尚玉明, 李建军. 高分散纳米Al2O3改性复合电解质隔膜的性能[J]. 电池, 2016, 46 (5):235-238. ZHOU Ranran, HE Xiangming, SHANG Yuming, LI Jianjun. Performance of composite electrolyte separator modified with highly dispersed nano-Al2O3[J]. Battery Bimonthly, 2016, 46 (5):235-238. [47] QIAN Guannan, WaNG Li, SHANG Yuming, et al. Polyimide binder:A facile way to improve safety of lithium ion batteries[J]. Electrochimica Acta, 2016, 187:113-118. [48] YANG Juping, ZHANG Yufeng, ZHAO Peng, et al. In-situ coating of cathode by electrolyte additive for high-voltage performance of lithium-ion batteries[J]. Electrochimica Acta, 2015, 158:202-208. [49] ZHANG Sen, CAO Jiang, SHANG Yuming, et al. Nanocomposite polymer membrane derived from nano TiO2/PMMA and glass fiber nonwoven:High thermal endurance and cycle stability in lithium ion battery applications[J]. Journal of Materials Chemistry A, 2015, 3:17697-17703. [50] 赵青, 张倩, 范镜敏, 等. 四丁基六氟磷酸铵作为锂离子电池阻燃添加剂的研究[J]. 电化学, 2017, 23 (4):435-440. ZHAO Qing, ZHANG Qian, FAN Jingmin, et al. Tetrabutylammonium hexafluorphosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Electrochemistry, 2017, 23 (4):435-440. [51] 钱新明, 周波. 绝热加速量热仪研究锂离子电池电解液热安全性[J]. 安全与环境学报, 2005, 5 (2):106-111. QIAN Xinming, ZHOU Bo. Application of accelerating rate calorimeter on thermal safety of lithium-ion battery electrolytes[J]. Journal of Safety and Environment, 2005, 5 (2):106-111. [52] 刘恒伟, 李建军, 谢潇怡, 等. 加速量热仪在锂离子电池热测试中的应用[J]. 集成技术, 2015, 4 (1):51-59. LIU Hengwei, LI Jianjun, XIE Xiaoyi, et al. Application of accelerating calorimeter in the lithium-ion battery thermal test[J]. Journal of Integration Technology, 2015, 4 (1):51-59. [53] 王浩, 李建军, 王莉, 等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013, 1:53-58. WANG Hao, LI Jianjun, WANG Li, et al. Application of accelerating rate calorimeter in safety research of lithium ion batteries[J]. Advanced Material Industry, 2013, 1:53-58. [54] 张松通, 李萌, 邱景义, 余仲宝. 锂离子电池大倍率放电热特性研究[J]. 电源技术, 2016, 40 (11):2132-2133. ZHANG Songtong, LI Meng, QIU Jingyi, YU Zhongbao. Study on thermal properties of high-power lithium ion battery discharging at high rate[J]. Chinese Journal of Power Sources, 2016, 40 (11):2132-2133. [55] 孙秋娟, 冯丽华, 王青松, 等. 脉冲放电过程中锂离子电池的热行为分析[J]. 工程热物理学报, 2017, 38 (9):2038-2043. SUN Qiujuan, FENG Lihua, WANG Qingsong, et al. The thermal response of lithium titanate battery during pulse discharge[J]. Journal of Engineering Thermophysics, 2017, 38 (9):2038-2043. [56] 张武寿, 张中良. 在线测量电池充放电过程热功率的量热计[J]. 合成化学, 2007 (S1):113-114. ZHANG Wushou, ZHANG Zhongliang. An on-line calorimeter for measuring the thermal power of a battery during charging and discharging[J]. Chinese Journal of Synthetic Chemistry, 2007 (S1):113-114. [57] 邱景义, 余仲宝, 李萌. 高功率锂离子电池热特性研究[J]. 电源技术, 2015, 39 (1):40-42. QIU Jingyi, YU Zhongbao, LI Meng. Thermal properties of high-power lithium ion batteries[J]. Chinese Journal of Power Sources, 2015, 39 (1):40-42. [58] 庄宗标, 徐秀娟, 姚卿敏, 邓霞. 加速量热仪在锂离子电池热安全性能方面的研究[J]. 电子质量, 2015 (4):4-8. ZHUANG Zongbiao, XU Xiujuan, YAO Qingmin, DENG Xia. Reaearch of accelerating rate calorimeter on thermal safety performance of lithium-ion[J]. Electronics Quality, 2015 (4):4-8. [59] 李慧芳, 黄家剑, 李飞, 高俊奎. 锂离子电池在充放电过程中的产热研究[J]. 电源技术, 2015, 39 (7):1390-1393+1481. LI Huifang, HUANG Jiajian, LI Fei, GAO Junkui. Study on heat production of lithium ion batteries during charge and discharge process[J]. Chinese Journal of Power Sources, 2015, 39 (7):1390-1393+1481. [60] 邹翠, 吴耿, 曾冬铭. 差分加速量热仪在热失控动力学研究中的应用[J]. 徐州工程学院学报 (自然科学版), 2015, 30 (3):53-58. ZOU Cui, WU Geng, ZENG Dongming. On the application of differential accelerating rate calorimeter in thermal runaway dynamics[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2015, 30 (3):53-58. [61] 祝夏雨, 张浩, 邱景义, 等. 软包锂硫电池热特性初步研究[J]. 电池工业, 2017, 21 (6):31-33. ZHU Xiayu, ZHANG Hao, QIU Jingyi, et al. Study on thermal properties of lithium-sulfur pouch cells[J]. Chinese Battery Industry, 2017, 21 (6):31-33. [62] 樊彬, 刘磊, 王芳, 王洪庆. 一种三元锂动力电池电化学-热耦合特性研析[J]. 电源技术, 2018, 42 (6):769-773. FAN Bin, LIU Lei, WANG Fang, WANG Hongqing. Study on electrochemical and thermal coupling characteristics of the ternary Li-ion traction battery[J]. Chinese Journal of Power Sources, 2018, 42 (6):769-773. [63] 李奇, 杨朗, 杨晖. 锂离子电池在循环过程中的产热研究[J]. 电源技术, 2008 (9):606-610. LI Qi, YANG Lang, YANG Hui. Investigation of the heat production of Li-ion batteries during cycling[J]. Chinese Journal of Power Sources, 2008 (9):606-610. [64] 张广源, 李志华, 金韶华, 等. 加速绝热量热仪用于含能材料热分解研究进展[J]. 兵器装备工程学报, 2016, 37 (4):85-88+94. ZHANG Guangyuan, LI Zhihua, JIN Shaohua, et al. Accelerating rate calorimeter and its application in thermal decomposition investigation of energetic materials[J]. Journal of Ordnance Equipment Engineerin Journal of Ordnance Equipment Engineering, 2016, 37 (4):85-88+94. [65] https://baike.baidu.com/. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | Jin XU, Xian DING, Yongli GONG, Guangli HE, Ting HU. Economic analysis of hydrogen production plant with water electrolysis [J]. Energy Storage Science and Technology, 2022, 11(7): 2374-2385. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
[5] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
[6] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[7] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[8] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[9] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[10] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[11] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[12] | Yuanxia DONG, Hengyun ZHANG, Jiajun ZHU, Xiaobin XU, Shunliang ZHU. Numerical simulation study on thermal runaway propagation mitigation structure of automotive battery module [J]. Energy Storage Science and Technology, 2022, 11(5): 1608-1616. |
[13] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[14] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[15] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||