Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 1016-1029.doi: 10.12028/j.issn.2095-4239.2018.0164
Previous Articles Next Articles
ZHANG Xiaosong, XIA Yonggao
Received:
2018-08-30
Revised:
2018-09-30
Online:
2018-11-01
Published:
2018-10-19
Contact:
10.12028/j.issn.2095-4239.2018.0164
CLC Number:
ZHANG Xiaosong, XIA Yonggao. Research progress on safety of lithium ion battery electrolyte[J]. Energy Storage Science and Technology, 2018, 7(6): 1016-1029.
[1] 吴宇平, 万春荣. 锂离子二次电池[M]. 北京:化学工业出版社, 2002. WU Y P, WAN C R. Lithium ion secondary batteries[M]. Beijing:Chemical Industry Press, 2002. [2] USUI H, DOMI Y, SHIMIZU M, et al. Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery[J]. Journal of Power Sources, 2016, 329:428-431. [3] HASTIE J W. Molecular basis of flame inhibition[J]. Journal of Research of the Notional Bureau of Standards-A. Physics and Chemistry, 1973, 77A (6):733. [4] WANG Xianming, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:I. Fundamental properties[J]. Journal of The Electrochemical Society, 2001, 148 (10):A1058-A1065. [5] KASHIWAGI T, GILMAN J W, BUTLER K M, et al. Flame-retardant mechanism of silica gel/silica[J]. Fire and Materials, 2001, 24 (6):277-289. [6] ZHANG Shengshui. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006,162 (2):1379-1394. [7] KALHOFF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries:State of the art and perspectives[J]. ChemSusChem, 2015, 8 (13):2154-2175. [8] SSHIM E G, NAM T H, KIM J G, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive[J]. Journal of Power Sources, 2007, 172 (2):919-924. [9] ZHU Qizhen, JING Tingting, CHEN Nan, et al. Study on TPP and DMMP as flame-retardant cosolvent in electrolytes for Li-ion batteries[J]. Transactions of Beijing Institute of Technology, 2015, 10 (35):1096-1100. [10] HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121:383-387. [11] WANG Qingsong, SUN Jinhua, YAO Xiaolin, et al. 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2005, 8 (9):A467-A470. [12] OTA H, KOMINATO A, CHUN W J, et al. Effect of cyclic phosphate additive in non-flammable electrolyte[J]. Journal of Power Sources, 2003, 119/120/121:393-398. [13] YAO Xiaolin, XIE Shouqi, CHEN Chong, et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144 (1):170-175. [14] ZHANG Shengshui, XU Kang, JOW T R. A thermal stabilizer for LiPF6-based electrolytes of Li-ion cells[J]. Electrochemical and Solid-State Letters, 2002, 5 (9):A206-A208. [15] LEE C W, VENKATACHALAPATHY R, PRAKASH J. A novel flame-retardant additive for lithium batteries[J]. Electrochemical and Solid-State Letters, 2000, 3 (2):63-65. [16] MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81/82:20-26. [17] KRAUSE F C, SMART M C, PRAKASH G K S. The use of fluorinated electrolytes in lithium-ion batteries for improved safety in human-rated aerospace and terrestrial applications[C]//ECS Meeting, 2013, MA2013-02 (14):1032. [18] BANKS R E, SMART B E, TATLOW J C. Organofluorine chemistry:Principles and commercial applications[M]. Plenum, 1994. [19] XU Kang, DING M S, ZHANG Shengshui, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society, 2002, 149 (5):A622-A626. [20] XU Kang, ZHANG Shengshui, ALLEN J L, et al. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate[J]. Journal of the Electrochemical Society, 2002, 149 (8):A1079-A1082. [21] XU Kang, DING M S, ZHANG Shengshui, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries:I. Physical and electrochemical properties[J]. Journal of the Electrochemical Society, 2003, 150 (2):A161-A169. [22] ZHANG Shengshui, XU Kang, JOW T R. Tris (2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003, 113 (1):166-172. [23] TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. Characteristics of lithium-ion battery with non-flammable electrolyte[J]. Journal of Power Sources, 2009, 189 (1):429-434. [24] ZHANG Qing, NOGUCHI H, WANG Hongyu, et al. Improved thermal stability of LiCoO2 by cyclotriphosphazene additives in lithium-ion batteries[J]. Chemistry Letters, 2005, 34 (7):1012-1013. [25] ALLEN C W, BEDELL S, PENNINGTON W T, et al. Organophosphazenes. 18. Friedel-crafts phenylation reactions of alkyl-and (dimethylamino)fluorocyclotriphosphazenes[J]. Inorganic Chemistry, 1985, 24 (11):1653-1656. [26] XIA Lan, XIA Yonggao, LIU Zhaoping. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources, 2015, 278:190-196. [27] ZHOU Daiying, LI Weishan, TAN Chunlin, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184 (2):589-592. [28] XIANG Hongfa, XU Huayun, WANG Zhengzhou, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame-retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173 (1):562-564. [29] BENMAYZA A, LU Wenquan, RAMANI V, et al. Electrochemical and thermal studies of LiNi0.8Co0.15Al0.015O2 under fluorinated electrolytes[J]. Electrochimica Acta, 2014, 123 (10):7-13. [30] ARAI J, KATAYAMA H, AKAHOSHI H. Binary mixed solvent electrolytes containing trifluoropropylene carbonate for lithium secondary batteries[J]. Journal of the Electrochemical Society, 2002, 149 (2):A217-A226. [31] YAMAKI J, YAMAZAKI I, EGASHIRA M, et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells[J]. Journal of Power Sources, 2001, 102 (1):288-293. [32] SATO K, YAMAZAKI I, OKADA S, et al. Mixed solvent electrolytes containing fluorinated carboxylic acid esters to improve the thermal stability of lithium metal anode cells[J]. Solid State Ionics, 2002, 148 (3):463-466. [33] IHARA M, HANG B T, SATO K, et al. Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte[J]. Journal of the Electrochemical Society, 2003, 150 (11):A1476-A1483. [34] ARAI J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries[J]. Journal of Applied Electrochemistry, 2002, 32 (10):1071-1079. [35] ARAI J. Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries[J]. Journal of the Electrochemical Society, 2003, 150 (2):A219-A228. [36] NAOI K, IWAMA E, HONDA Y, et al. Discharge behavior and rate performances of lithium-ion batteries in nonflammable hydrofluoroethers (Ⅱ)[J]. Journal of the Electrochemical Society, 2010, 157 (2):A190-A195. [37] NAOI K, IWAMA E, OGIHARA N, et al. Nonflammable hydrofluoroether for lithium-ion batteries:Enhanced rate capability, cyclability, and low-temperature performance[J]. Journal of the Electrochemical Society, 2009, 156 (4):A272-A276. [38] NAGASUBRAMANIAN G, ORENDORFF C J. Hydrofluoroether electrolytes for lithium-ion batteries:Reduced gas decomposition and nonflammable[J]. Journal of Power Sources, 2011, 196 (20):8604-8609. [39] XIA Lan, XIA Yonggao, WANG Chuanshui, et al. 5 V-Class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2 (11):1707-1712. [40] WANG Jianhui, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3 (1):22-29. [41] JEONG S, INABA M, IRIYAMA Y, et al. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions[J]. Electrochemical and Solid-State Letters, 2003, 6 (1):A13-A15. [42] JEONG S, INABA M, IRIYAMA Y, et al. Interfacial reactions between graphite electrodes and propylene carbonate-based solutions:Electrolyte-concentration dependence of electrochemical lithium intercalation reaction[J]. Journal of Power Sources, 2008, 175 (1):540-546. [43] YAMADA Y, USUI K, CHIANG C H, et al. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes[J]. ACS Applied Materials & Interfaces, 2014, 6 (14):10892-10899. [44] YAMADA Y, YAEGASHI M, ABE T, et al. A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chemical Communications, 2013, 49 (95):11194-11196. [45] YAMADA Y, TAKAZAWA Y, MIYAZAKI K, et al. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes:Effect of solvation structure of lithium ion[J]. The Journal of Physical Chemistry C, 2010, 114 (26):11680-11685. [46] SUO Liumin, HU Yongsheng, LI Hong, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4:1481. [47] QIAN Jiangfeng, HENDERSON W A, XU Wu, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6:6362. [48] PAPPENFUS T M, HENDERSON W A, OWENS B B, et al. Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials[J]. Journal of the Electrochemical Society, 2004, 151 (2):A209-A215. [49] YOSHIDA K, NAKAMURA M, KAZUE Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. Journal of the American Chemical Society, 2011, 133 (33):13121-13129. [50] YOSHIDA K, TSUCHIYA M, TACHIKAWA N, et al. Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis (trifluoromethanesulfonyl)amide and glymes[J]. The Journal of Physical Chemistry C, 2011, 115 (37):18384-18394. [51] YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136 (13):5039-5046. [52] ZENG Ziqi, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3:674-681. [53] CHEN Shuru, ZHENG Jianming, YU Lu, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2 (8):1548-1558. [54] ZHENG Jianming, CHEN Shuru, ZHAO Wengao, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3 (2):315-321. [55] REN Yonghuan, MU Daobin, WU Feng, et al. Novel slurry electrolyte containing lithium metasilicate for high electrochemical performance of a 5 V cathode[J]. ACS Applied Materials & Interfaces, 2015, 7 (41):22898-22906. [56] XU Hewei, SHI Junli, HU Guosheng, et al. Hybrid electrolytes incorporated with dandelion-like silane-Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries[J]. Journal of Power Sources, 2018, 391:113-119. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[3] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[4] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[5] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[8] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[9] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[10] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[11] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[14] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[15] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||