Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (5): 829-837.doi: 10.12028/j.issn.2095-4239.2019.0056
Previous Articles Next Articles
YANG Jianfeng1, LI Linyan1, WU Zhenyue2, WANG Kaixue2
Received:
2019-04-15
Revised:
2019-05-09
Online:
2019-09-01
Published:
2019-06-11
CLC Number:
YANG Jianfeng, LI Linyan, WU Zhenyue, WANG Kaixue. Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837.
[1] 张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5):861-868. ZHANG Jianjun, DONG Tiantian, YANG Jinfeng, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5):861-868. [2] 赵玉超, 蓝凌霄, 梁兴华, 等. Li1.3Al0.3Ti1.7(PO4)3固态电解质的制备及表征[J]. 电源技术, 2019, 43(1):34-37. ZHAO Yuchao, LAN Linxiao, LIANG Xinghua, et al. Studies on solid electrolyte materials of Li1.3Al0.3Ti1.7(PO4)3[J]. Chinese Journal of Power Sources, 2019, 43(1):34-37. [3] YU S C, SCHMOHL S, LIU Z G, et al. Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage allsolid-state lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7:3882-3894. [4] THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries:Critical review[J]. Chemical Society Reviews, 2014, 43(13):4714-4727. [5] LIU X Y, LI X R, LI H X, et al. Recent progress of hybrid solid-state electrolytes for lithium batteries[J]. Chemistry-A European Journal, 2018, 24:18293-18306. [6] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries:Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1):140-162. [7] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Electrical properties of amorphous lithium electrolyte thin films[J]. Solid State Ionics, Diffusion & Reactions, 1992, 53-56(part-P1):647-654. [8] VAN-JODIN L L, CLAUDEL A, SECOUARD C, et al. Role of the chemical composition and structure on the electrical properties of a solid state electrolyte:Case of a highly conductive LiPON[J]. Electrochimica Acta, 2018, 259(1):742-751. [9] FRÉDÉRIC L C, PECQUENARD B, DUBOIS V, et al. All-solid-state lithium-ion microbatteries using silicon nanofilm anodes:High performance and memory effect[J]. Advanced Energy Materials, 2015, 5(19):doi:10.1002/aenm.201501061. [10] BRIGHI M, SCHOUWINK P, SADIKIN Y, et al. Fast ion conduction in garnet-type metal borohydrides Li3K3Ce2(BH4)12 and Li3K3La2(BH4)12[J]. Journal of Alloys and Compounds, 2016, 662:388-395. [11] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12(M:Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 34(27):437-440. [12] GAO Y X, WANG X P, WANG W G, et al. Sol-gel synthesis and electrical properties of Li5La3Ta2O12 lithium ionic conductors[J]. Solid State Ionics, 2010, 181(1/2):33-36. [13] BUSCHMANN H, DÖLLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12"[J]. Physical Chemistry Chemical Physics Pccp, 2011, 13(43):19378-19392. [14] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9):682-686. [15] BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12:An affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135:15694-15697. [16] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4):doi:10.1038/nenergy.2016.30. [17] CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries:From comprehensive insight to emerging horizons[J]. Material Horizon, 2016, 3:487-516. [18] 黄祯, 杨菁, 陈晓天, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1):2-16. HUANG Zhen, YANG Jing, CHEN Xiaotian, et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1):2-16. [19] JIMENEZ R, CAMPO A D, CALZADA M L, et al. Lithium La0.57Li0.33TiO3 perovskite and Li1.3Al0.3Ti1.7(PO4)3 Li-NASICON supported thick films electrolytes prepared by tape casting method[J]. Journal of the Electrochemical Society, 2016, 163(8):A1653-A1659. [20] HUANG B, XU B, HOU W, et al. Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3[J]. ACS Appl. Mater. Interfaces, 2016, 8(23):14552-14557. [21] KIMURA K, WAGATSUMA K, TOJO T, et al. Effect of composition on lithium-ion conductivity for perovskite-type lithium-strontiumtantalum-zirconium-oxide solid electrolytes[J]. Ceramics International, 2016, 42(4):5546-5552. [22] LI J, MA C, CHI M, et al. Solid electrolyte:The key for high-voltage lithium batteries[J]. Advanced Energy Materials, 2015, 5(4):doi:10.1002/aenm.201401408. [23] ZHANG Z Z, SHAO Y J, LOTSCH B V, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11:1945-1976. [24] GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30:doi:10.1002/adma.201705702. [25] KOO M, PARK K, LEE S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano Letters, 2012, 12(9):4810-4816. [26] NOWAK S, BERKEMEIER F, SCHMITZ G. Ultra-thin LiPON filmsfundamental properties and application in solid state thin film model batteries[J]. Journal of Power Sources, 2015, 275(5):144-150. [27] XIAO D L, JUN T, YE F, et al. Improved performance of all-solidstate lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target[J]. Solid State Ionics, 2018, 324:202-206. [28] LI L, LIU S, ZHOU H, et al. All solid-state thin-film lithium-ion battery with Ti/ZnO/LiPON/LiMn2O4/Ti structure fabricated by magnetron sputtering[J]. Materials Letters, 2018, 216(1):135-138. [29] LE T N H, ROFFAT M, PHAM Q N, et al. Synthesis of the perovskite ceramic Li3xLa2/3-xTiO3 by a chemical solution route using a triblock copolymer surfactant[J]. Journal of Sol-Gel Science and Technology, 2008, 46(2):137-145. [30] 陈龙, 池上森, 董源, 等. 全固态锂电池关键材料-固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1):21-34. CHEN Long, CHI Shangsen, DONG Yuan, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1):21-34. [31] YU K, GU R, WU L F, et al.Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2-SiO2-B2O3 glass[J]. Journal of Alloys and Compounds, 2018, 739:892-896. [32] 孙滢智, 黄佳琦, 张学强, 等. 基于硫化物固态电解质的固态锂硫电池研究进展[J]. 储能科学与技术, 2017, 6(3):464-478. SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, et al. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3):464-478. [33] 赵鹏程, 祝夏雨, 曹高萍, 等. 冷等静压法制备Li7La3Zr2O12固体电解质[J]. 电池, 2017, 47(3):131-136. ZHAO Pengcheng, ZHU Xiayu, CAO Gaoping, et al. Preparing Li7La3Zr2O12 solid electrolyte by solid isostatic pressing method[J]. Battery Biomonthly, 2017, 47(3):131-136. [34] SHIN R H, SON S I, HAN Y S, et al. Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for all-solid-state lithium batteries[J]. Solid State Ionics, 2017, 301:10-14. [35] BERNUY-LOPEZ C, MANALASTAS W, AMO J M, et al. Atmosphere controlled processing of ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chemistry of Materials, 2014, 26(12):3610-3617. [36] 查文平, 李君阳, 阳敦杰, 等. 无机固体电解质Li7La3Zr2O12的研究进展[J]. 中国材料进展, 2017, 36(10):700-727. ZHA Wenping, LI Junyang, YANG Dunjie, et al. Research advances of inorganic solid electrolyte Li7La3Zr2O12[J]. Materials China, 2017, 36(10):700-727. [37] XIA W, XU B, DUAN H, et al. Reaction mechanisms of lithium garnet pellets in ambient air:The effect of humidity and CO2[J]. Journal of the American Ceramic Society, 2017, 100(7):2832-2839. [38] ZHANG B, TAN R, YANG L, et al. Mechanisms and properties of iontransport in inorganic solid electrolytes[J]. Energy Storage Materials, 2017, 10:139-159. [39] JIAN G, ZHAO Y S, SHI S Q, et al. Lithium-ion transport in inorganic solid state electrolyte[J]. Chinese Physics B, 2016, 25(1):doi:10.1088/1674-1056/25/1/018211. [40] WANG Y M, LIU Z Q, ZHU X L, et al. Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method[J]. Journal of Power Sources, 2013, 224:225-229. [41] HONG Y P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2):117-124. [42] FUJIMURA K, SEKO A, KOYAMA Y, et al. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms[J]. Advanced Energy Materials, 2013, 3(8):980-985. [43] DENG Y, EAMES C, FLEUTOT B, et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect[J]. ACS Applied Materials & Interfaces, 2017, 9(8):7050-7058. [44] ONG S P, MO Y, RICHARDS W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X=O, S or Se) family of superionic conductors[J]. Energy Environmental Science, 2013, 6(1):148-156. [45] SONG S, LU J, ZHENG F, et al. ChemInform abstract:A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes[J]. Cheminform, 2014, 5(9):6588-6594. [46] CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithiumbatteries:From comprehensive insight toemerging horizons[J]. Materials Horizons, 2016, 3:487-516. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[6] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[7] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[8] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[9] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[10] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[11] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[12] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[13] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
[14] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[15] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||