Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (S1): 23-31.doi: 10.19799/j.cnki.2095-4239.2019.0218
Previous Articles Next Articles
JIN Yuan1, HAN Tian2, HAN Xin2, KANG Xin2
Received:
2019-09-25
Revised:
2019-11-06
Online:
2019-12-05
Published:
2019-11-11
CLC Number:
JIN Yuan, HAN Tian, HAN Xin, KANG Xin. A review on thermal management techniques for lithium-ion battery[J]. Energy Storage Science and Technology, 2019, 8(S1): 23-31.
[1] 王峰,李茂德.电池热效应分析[J].电源技术, 2010, 34(3):288-289. WANG F, LI M D. Battery thermal effect analysis[J]. Chinese Journal of Power Sources, 201, 34(3):288-289. [2] 欧阳陈志,梁波,刘燕平,等.锂离子动力电池安全性研究进展[J].电源技术, 2014, 138(2):382-383. OUYANG C Z, LIANG B, LIU Y P, et al. Research progress on safety of lithium ion power battery[J]. Chinese Journal of Power Sources, 2014, 138(2):382-383. [3] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of Electrochem. Soc., 1985, 132(1):5-12. [4] 李慧芳,李飞.锂离子电池的可逆及不可逆产热测试[J].电源技术, 2016, 40(11):2182-2132. LI H F, LI F. Reversible and irreversible heat test of lithium ion batteries[J]. Chinese Journal of Power Sources, 2016, 40(11):2182-2132. [5] LU W Q, YANG H, PRAKASH J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetry[J]. Electrochimica Acta, 2006, 51:1322-1329. [6] 罗玲,宋文吉,林仕立,等.锂离子电池热模型的研究现状[J].电池, 2015, 45(5):281-282. LUO L, SONG W J, LIN S L, et al. Research status of thermal model of lithium ion battery[J]. Battery Bimonthly, 2015, 45(5):281-282. [7] ZHANG X W. Thermal analysis of a cylindrical lithium-ion battery[J]. Electrochimica Acta, 2011, 56(3):1246-1255. [8] 李腾,林成涛,陈全世.锂离子电池热模型研究进展[J].电源技术, 2009, 133(10):928-929. LI T, LIN C T, CHEN S Q. Research progress on thermal model of lithium ion battery[J]. Chinese Journal of Power Sources, 2009, 133(10):928-929. [9] DEES D W, BATTAGLIA V S. Electrochemical modeling of lithium polymer batteries[J]. Journal of Power Sources, 2002, 110:310-320. [10] 虢放,薛明喆,张存满.电极厚度对锂离子电池电化学性能的影响[J].电源技术, 2017, 41(8):1114-1117. HU F, XUE M Z, ZHANG C M. Effect of electrode thickness on electrochemical performance of lithium ion batteries[J]. Chinese Journal of Power Sources, 2017, 41(8):1114-1117. [11] 程洪正,张立军,阮丞,等.锂离子电池温度场相似准则推导与有限元验证[J].同济大学学报(自然科学报), 2013, 41(8):1249-12554. CHENG H Z, ZHANG L J, RUAN C, et a. Derivation and finite element verification of temperature field similarity criterion for lithium ion batteries[J]. Journal of Tongji University (Natural Science Journal), 2013, 41(8):1249-12554. [12] 张立军,李文博,程洪正.三维锂离子单电池电化学-热耦合模型[J].电源技术, 2016, 40(7):1362-1490. ZHANG L J, LI W B, CHENG H Z. Three-dimensional lithium ion single cell electrochemical-thermal coupling model[J]. Chinese Journal of Power Sources, 2016, 40(7):1362-1490. [13] 陈大分.动力锂离子电池系统热管理研究[D].北京:北京交通大学, 2017.CHEN D F. Research on thermal management of power lithium-ion battery system[D]. Beijing:Beijing Jiaotong University, 2017. [14] 马彦,高肖璟.基于热电耦合模型的锂电池内核温度估计[J].中北大学学报, 2018, 39(5):595-601. MA Y, GAO X J. Temperature estimation of lithium battery core based on thermoelectric coupling model[J]. Journal of North University of China, 2018, 39(5):595-601. [15] 宋士刚,李小平.电动汽车锂离子电池释热机理及电热耦合模型[J].电源技术, 2016, 40(2):280-282. SONG S G, LI X P. Heat release mechanism and electrothermal coupling model of lithium ion battery for electric vehicles[J]. Chinese Journal of Power Sources, 2016, 40(2):280-282. [16] 姜水生,何志坚,文华.锂离子电池电-热耦合模型分析及温度场仿真研究[J].热科学与技术, 2018, 17(3):238-244. JIANG S S, HE Z J, WEN H. Electro-thermal coupling model analysis and temperature field simulation of lithium-ion battery[J]. Journal of Thermal Science and Technology, 2018, 17(3):238-244. [17] KWON K H, SHIN C B, KANG T H. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of Power Sources, 2006, 163:151-157. [18] KIM U S, SHIN C B, KIM C S. Modeling for scale-up of a lithium-ion polymer battery[J]. Journal of Power Sources, 2009, 189:841-846. [19] KIM U S, YI J S, SHIN C B, et al. Modeling the thermal behavior of a lithium-ion battery during charge[J]. Journal of Power Sources, 2011, 196:5115-5121. [20] KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170:476-489. [21] HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7):A755-A761. [22] 孙林,郑岳久,周龙,等.三元锂电池的过放电诱发内短路实验研究[J].电源技术, 2018, 42(10):1454-1457, 1566. SUNL L, ZHENG Y J, ZHOU L, et al. Experimental study on overdischarge induced internal short circuit of ternary lithium battery[J]. Chinese Journal of Power Sources, 2018, 42(10):1454-1457, 1566. [23] 张明轩,冯旭宁,欧阳明高,等.三元锂离子动力电池针刺热失控实验与建模[J].汽车工程, 2015, 37(7):743-756. ZHANG M X, FENG X N, OUYANG M G, et al. Experiment and modeling of acupuncture thermal runaway for ternary lithium ion power battery[J]. Automotive Engineering, 2015, 37(7):743-756. [24] 刘仕强,王芳,樊彬,等.针刺速度对动力锂离子电池安全性的影响[J].汽车安全与节能学报, 2013, 4(1):82-86. LIU S Q, WANG F, FAN B, et al. Effect of acupuncture speed on the safety of power lithium-ion battery[J]. Journal of Automotive Safety and Energy, 2013, 4(1):82-86. [25] 曾凡帅,魏学哲.混合动力汽车镍氢动力电池包热管理研究[J].机电一体化, 2014:31-35. ZWNG F S, WEI X Z. Research on thermal management of Ni-MH power battery pack for hybrid electric vehicles[J]. Mechatronics, 2014:31-35. [26] FAN L, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238:301-312. [27] 常国锋,陈磊涛,许思传.动力蓄电池风冷热管理系统的研究[J].汽车工程, 2011, 33(10):890-893. CHANG G F, CHEN L T, XU S C. Research on power battery air cooling and heat management system[J]. Automotive Engineering, 2011, 33(10):890-893. [28] MAHMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13):5685-5696. [29] 王丽娜,杨凯,惠东.储能用锂离子电池组热管理结构设计[J].电源技术, 2011, 35(11):1351-1353. WANG L N, YANG K, HUI D. Thermal management structure design of lithium ion battery pack for energy storage[J]. Chinese Journal of Power Sources, 2011, 35(11):1351-1353. [30] PANCHAL S, DINCER I, FOWLER M. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99:204-212. [31] TONG W, SOMASUNDARAM K, BIRERSSON E, et al. Numerical investigation of water cooling for a lithium-ion bipolar battery pack[J]. International Journal of Thermal Sciences, 2015, 94:259-269. [32] 姜水生,何志坚,文华.基于电-热耦合模型的锂离子电池组热管理系统设计与优化[J].中国机械工程, 2018, 29(15):1847-1853. JIANG S S, HE Z J, WEN H. Design and optimization of thermal management system for lithium-ion battery pack based on electrothermal coupling model[J]. China Mechanical Engineering, 2018, 29(15):1847-1853. [33] ZHAO J, RAO Z, LI Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy Conversion and Management, 2015, 103:157-165. [34] 李闻铮,徐心海.一种新型车载锂离子电池的热管理系统:CN 108520991A[P]. 2018-06-08. LI W Z, XU X H. A new thermal management system for automotive lithium-ion batteries:CN 108520991A[P]. 2018-06-08. [35] 盘朝奉,李桂权,陈龙,等.锂离子动力电池组相变材料散热结构优化[J].机械设计与制造, 2017(9):16-19. PAN Z F, LI G Q, CHEN L, et al. Optimization of heat dissipation structure of phase change material for lithium ion power battery pack[J]. Machinery Design&Manufacture, 2017(9):16-19. [36] KHATEEB S A, FARID M M, SELMAN J R, et al. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J]. Journal of Power Soueces, 2004, 128(2):292-307. [37] 安治国,刘奇,郭敬谊.泡沫铝/石蜡PCM对锂电池组峰值温度的影响[J].电源技术, 2018, 42(8):1136-1139. AN Z G, LIU Q, GUO J Y. Effect of aluminum foam/paraffin PCM on peak temperature of lithium battery pack[J]. Chinese Journal of Power Sources, 2018, 42(8):1136-1139. [38] 姜贵文,黄菊花.膨胀石墨/石蜡复合材料的制备及热管理性能[J].材料工程, 2017, 45(7):41-47. JIANG G W, HUANG J H. Preparation and thermal management properties of expanded graphite/paraffin composites[J]. Journal of Materials Engineering, 2017, 45(7):41-47. [39] TRAN T H, HARMAND S, SAHUT B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery[J]. Journal of Power Sources, 2014, 265:262-272. [40] 王宇,张国庆,刘湘云.半导体制冷技术在动力电池热管理中的应用研究[J].广东化工, 2015, 42(13):16-17. WANG Y, ZHANG G Q, LIU X Y. Application research of semiconductor refrigeration technology in thermal management of power battery[J]. Guangdong Chemical Industry, 2015, 42(13):16-17. [41] 王丽娜,刘皓,杨凯,等.软包装电池成组热结构设计[J].化学工业与工程, 2014, 31(3):39-43. WANG L N, LIU H, YANG K, et al. Flexible packaging battery thermal structure design[J]. Chemical Industry and Engineering, 2014, 31(3):39-43. [42] LYU Y, YANG X, LI X, et al. Experimental study on a novel battery thermal management technology based on low density polyethyleneenhanced composite phase change materials coupled with low fins[J]. Applied Energy, 2016, 178:376-382. [43] FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275:261-273. [44] 何向明,冯旭宁,欧阳明高.车用锂离子动力电池系统的安全性[J].科技导报, 2016, 34(6):32-38. HE X M, FENG X N, OUYANG M G. Safety of lithium ion battery system for vehicles[J]. Science Technology Review, 2016, 34(6):32-38. [45] 陈天雨,冯旭宁,欧阳明高,等.基于模型的动力电池系统多尺度热安全设计[J].中国机械工程, 2018, 29(15):1840-1846. CHEN T Y, FENG X N, OUYANG M G, et al. Model-based multi-scale thermal safety design of power battery system[J]. China Mechanical Engineering, 2018, 29(15):1840-1846. [46] 邓志彬,孙强,贺元骅. 18650型锂离子电池热失控火灾扩展触发条件研究[J].消防科学与技术, 2018, 37(5):690-693. DENG Z B, SUN Q, HE Y H. Study on triggering conditions of 18650 lithium-ion battery thermal runaway fire expansion[J]. Fire Science and Technology, 2018, 37(5):690-693. [47] 胡棋威.锂离子电池热失控传播特性及阻断技术研究[D].北京:中国舰船研究院, 2015. HU Q W. Study on thermal out-of-control propagation characteristics and blocking technology of lithium ion batteries[D]. Beijing:China Ship Research and Development Academy, 2015. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[6] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[7] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[8] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[9] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[10] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[11] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[12] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[13] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[14] | Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. |
[15] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||