Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 818-825.doi: 10.19799/j.cnki.2095-4239.2019.0254
Previous Articles Next Articles
WANG Chao1, XIANG XIAO1(), ZHONG Guobin1, WANG Pei2, LIU Liming2, ZHAO Yabin2, SHI Zhiqiang2()
Received:
2019-11-07
Revised:
2019-11-14
Online:
2020-05-05
Published:
2020-05-11
Contact:
XIAO XIANG,Zhiqiang SHI
E-mail:xiaoxiang@gddky.csg.cn;shizhiqiang@tjpu.edu.cn
CLC Number:
WANG Chao, XIANG XIAO, ZHONG Guobin, WANG Pei, LIU Liming, ZHAO Yabin, SHI Zhiqiang. Water chestnut-based hard carbon prepared by hydrothermal-carbonization method as anode for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 818-825.
Table 3
Galvanostatic charge/discharge data of HT-x at current density of 0.1 C"
样品 | 循环次数 | 放电容量/mA·h·g-1 | 充电容量 /mA·h·g-1 | 不可逆容量 /mA·h·g-1 | 库仑效率/% |
---|---|---|---|---|---|
HT-900 | 1st | 734.7 | 388 | 346.7 | 52.81 |
2nd | 394.5 | 357.8 | 36.7 | 90.70 | |
HT-1100 | 1st | 707.6 | 405.6 | 302.0 | 57.32 |
2nd | 400.2 | 368.2 | 32.0 | 92.00 | |
HT-1300 | 1st | 398.8 | 237.3 | 161.5 | 59.50 |
2nd | 250.8 | 236.4 | 14.4 | 94.26 | |
HT-1500 | 1st | 314.3 | 210.1 | 104.2 | 66.85 |
2nd | 230.5 | 205.7 | 24.8 | 89.24 |
1 | ZHENG T, XING W, DAHN J R. Carbons prepared from coals for anodes of lithium-ion cells[J]. Carbon, 1996, 34(12): 1501-1507. |
2 | 徐凯琪, 苏伟, 钟国彬, 等. 高容量锂离子电池硅基负极材料的研究进展[J]. 广东电力, 2017, 30(8): 1-7. |
XU K Q, SU W, ZHONG G B, et al. Research progress of silicon-based anode materials for high-capacity lithium-ion batteries[J]. Guangdong Electric Power, 2017, 30(8): 1-7. | |
3 | 郭建. 锂离子电池负极材料的研究进展[J]. 炭素, 2018(3): 39-42. |
GUO J. Research progress of negative electrode materials for lithium ion batteries[J]. Carbon, 2018(3): 39-42. | |
4 | KALYANI P, ANITHA A. Biomass carbon & its prospects in electrochemical energy systems[J]. Hydrogen Energy, 2013, 38(10): 4034-4045. |
5 | ZHANG L, LIU Z, CUI G, et al. Biomass-derived materials for electrochemical energy storages[J]. Progress in Polymer Science, 2015, 43: 136-164. |
6 | LUX S F, PLACKE T, ENGELHARDT C, et al. Enhanced electrochemical performance of graphite anodes for lithium-ion batteries by dry coating with hydrophobic fumed silica[J]. Journal of the Electrochemical Society, 2012, 159(11): A1849-A1855. |
7 | KELLER M, VAALMA C, BUCHHOLZ D, et al. Cover picture: Development and characterization of high-performance sodium-ion cells based on layered oxide and hard carbon[J]. ChemElectroChem, 2016, 3(7): 1124-1132. |
8 | CAMPBELL B, IONESCU R, FAVORS Z, et al. Bio-derived, binderless, hierarchically porous carbon anodes for Li-ion batteries[J]. Scientific Reports, 2015, 5: doi: 10.1038/srep14575. |
9 | WU L, BUCHHOLZ D, VAALMA C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries[J]. Chemelectrochem, 2016, 3(2): 292-298. |
10 | YUN J H, JEONG S K, NAHM K S, et al. Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries[J]. Journal of Physics & Chemistry of Solids, 2007, 68(2): 182-188. |
11 | RYU D J, OH R G, SEO Y D, et al. Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw[J]. Environmental Science & Pollution Research International, 2015, 22(14): 10405-10412. |
12 | ZHANG Y, ZHANG F, LI G D, et al. Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries[J]. Materials Letters, 2007, 61(30): 5209-5212. |
13 | STEPHAN A M, RAMESH S, KUMAR T P, et al. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries[J]. Materials Science & Engineering A, 2006, 430(1): 132-137. |
14 | BHARDWAJ S, JAYBHAYE S, SHARON M, et al. Carbon nanomaterial from tea leaves as an anode in lithium secondary batteries[J]. Asian Journal of Experiment Science, 2008, 22(2): 89-93. |
15 | FEY T K, LEE D C, LIN Y Y, et al. High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials[J]. Synthetic Metals, 2003, 139(1): 71-80. |
16 | FEY T K, LIN Y Y, HUANG K P, et al. Green energy anode materials: Pyrolytic carbons derived from peanut shells for lithium ion batteries[J]. Advanced Materials Research, 2012, 415/416/417: 1572-1585. |
17 | HWANG Y J, JEONG S K, SHIN J S, et al. High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries[J]. Journal of Alloys and Compounds, 2008, 448(1/2): 141-147. |
18 | PELED E, ESHKENAZI V, ROSENBERG Y. Study of lithium insertion in hard carbon made from cotton wool[J]. Journal of Power Sources, 1998, 76(2): 153-158. |
19 | LI W, CHEN M, WANG C. Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries[J]. Material Letters, 2011, 65(23/24): 3368-3370. |
20 | ZHENG P, LIU T, ZHANG J Z, et al. Sweet potato-derived carbon nanoparticles as anode for lithium ion battery[J]. RSC Advances, 2015, 5 (51): 40737-40741. |
21 | WANG J, YAN L, REN Q, et al. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery[J]. Electrochimica Acta, 2018, 291: 188-196. |
22 | ZHU Z, LIANG F, ZHOU Z, et al. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 6(4): 1513-1522. |
23 | BAI Y, LIU Y, LI Y, et al. Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone: Via environmentally friendly electrostatic spinning for sodium ion battery anodes[J]. RSC Advances, 2017, 7(9): 5519-5527. |
24 | LONG Q, CHEN W, XU H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitor[J]. Energy & Environmental Science, 2013, 6(8): 2497-2504. |
25 | HAO Y, CHEN C, YANG X, et al. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 338: 9-16. |
26 | LI X, GENG D, ZHANG Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrochemistry Communications, 2011, 13(8): 822-825. |
27 | QIE L, CHEN W M, WANG Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012, 24(15): 2047-2050. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[5] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[6] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[7] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[8] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[9] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[10] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[11] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[12] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[13] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[14] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[15] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||