Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (S1): 78-94.doi: 10.19799/j.cnki.2095-4239.2020.0317
• Energy Storage Test: Methods and Evaluation • Previous Articles
Hengrui ZHANG1(), Yue SHEN1(), Yao YU1, Yunhui HUANG1, Liwei CHEN2
Received:
2020-09-14
Revised:
2020-10-30
Online:
2020-12-05
Published:
2020-12-02
Contact:
Yue SHEN
E-mail:zhang_hengrui@sjtu.edu.cn;shenyue1213@hust.edu.cn
CLC Number:
Hengrui ZHANG, Yue SHEN, Yao YU, Yunhui HUANG, Liwei CHEN. Advances in the application of solid-state nuclear magnetic resonance for the study of ion diffusion mechanism in battery materials[J]. Energy Storage Science and Technology, 2020, 9(S1): 78-94.
1 | ZHONG G, LIU Z, WANG D, et al. Recent progress in solid-state NMR study of electrode/electrolyte materials for lithium/sodium ionbatteries[J]. J. Electrochem. 2016, 22(3): 231-243. |
2 | WU X, XU G, ZHONG G, et al. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22227-22237. |
3 | PECHER O, CARRETERO-GONZÁLEZ J, GRIFFITH K J, et al. Materials' methods: NMR in battery research[J]. Chemistry of Materials, 2016, 29(1): 213-242. |
4 | SHADIKE Z, ZHAO E, ZHOU Y N, et al. Advanced characterization techniques for sodium-ion battery studies[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702588. |
5 | KIM J S, LEE K W, KIM H S, et al. Structural defects in LiCO2 studied by 7Li nuclear magnetic relaxation[J]. Appl. Phys. Lett., 2010, doi: 10.1063/1.3310012. |
6 | JIN Y, KNEUSELS N J H, MAGUSIN P C M M, et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroe thylene carbonate[J]. Journal of the American Chemical Society, 2017, 139(42): 14992-15004. |
7 | VINOD C C, PRISTAT S, WITT E, et al. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2-x(PO4)3(0.0≤x≤1.0)[J]. The Journal of Physical Chemistry C, 2016, 120(16): 8436-8442. |
8 | XIANG Yuxuan, ZHENG Guorui, YANG Yong, et al. Toward understanding of ion dynamics in highly conductive lithium ion conductors: Some perspectives by solid state NMR techniques[J]. Solid State Ionics, 2018, 318: 19-26. |
9 | KUHN Alexander, SREERAJ Puravankara, PÖTTGEN Rainer, et al. Li ion diffusion in the anode material Li12Si7: Ultrafast quasi-1D diffusion and two distinct fast 3D jump processes separately revealed by 7Li NMR relaxometry[J]. J. Am. Chem. Soc., 2011, 133: 11018-11021. |
10 | MÄRKER K, REEVES P J, XU C, et al. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2(NMC811) cathodes during electrochemical cycling[J]. Chem. Mater., 2019, 31: 2545-2554. |
11 | WANG Dawei, ZHONG Guiming, LI Yixiao, et al. Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate[J]. Solid State Ionics 2015, 283: 109-114. |
12 | SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8 (7): 692-697. |
13 | HWANG S, CHANG W, KIM S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge[J]. Chemistry of Materials 2014, 26(2):1084-1092. |
14 | SEYMOUR I D, MIDDLEMISS D S, HALAT D M, et al. Characterizing oxygen local environments in paramagnetic battery materials via 17O NMR and DFT calculations[J]. Journal of the American Chemical Society, 2016, 138(30): 9405-9408. |
15 | ZHENG S, HONG C, GUAN X, et al, Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process[J]. Journal of Power Sources, 2019, 412: 336-343. |
16 | PENG C, NING G, SU J, et al. Reversible multi-electron redox chemistry of p-conjugated N-containing heteroaromatic molecule based organic cathodes[J]. Nature Energy, 2017, 2(7): doi: 10.1038/nenergy.2017.74. |
17 | HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102. |
18 | CABALLERO A, HERNÁN L, MORALES J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells[J]. Journal of Materials Chemistry, 2002, 12(4): 1142-1147. |
19 | LIANG Xinmiao, WANG Liyang, JIANG Yangming, et al. In-channel and in-plane Li ion diffusions in the superionic conductor Li10GeP2S12 probed by solid-state NMR[J]. Chem. Mater., 2015, 27: 5503-5510. |
20 | CLEMENT R J, BILLAUD J, ROBERT A A, et al. Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies[J]. Energy & Environmental Science, 2016, 9(10): 3240-3251. |
21 | Chandran V C, PRISTAT S, WITT E, et al. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2-x(PO4)3 (0.0≤x≤1.0)[J]. J. Phys. Chem. C, 2016, 120: 8436-8442. |
22 | ZHENG S, ZHONG G, MCDONALD M J, et al. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(23): 9054-9062. |
23 | KUHN A, NARAYANAN S, SPENCER L, et al. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy[J]. Physical Review B, 2011, 83, doi: 10.1103/PhysRevB.83.094302 |
24 | ZHENG Jin, TANG Mingxue, HU Yanyan, et al. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angew. Chem. Int. Ed., 2016, 55: 12538-12542. |
25 | ZHENG Jin, HU Yanyan. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Appl. Mater. Interfaces, 2018, 10: 4113-4120. |
26 | SMILEY D L, GOWARD G R. Ex situ 23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling[J]. Chem. Mater., 2016, 28(21): 7645-7656. |
27 | BROUX T, BAMINE T, SIMONELLI L, et al. VIV disproportionation upon sodium extraction from Na3V2(PO4)2F3 observed by operando X-ray absorption spectroscopy and solid-state NMR[J]. The Journal of Physical Chemistry C, 2017, 121(8): 4103-4111. |
28 | BROUX T, BAMINE T, FAUTH F, et al. Strong impact of the oxygen content in Na3V2(PO4)2F3-yO(0≤y≤0.5) on its structural and electrochemical properties[J]. Chemistry of Materials, 2016, 28 (21): 7683-7692. |
29 | OYAMA G, PECHER O, GRIFFITH K J, et al. Sodium intercalation mechanism of 3.8 V class alluaudite sodium iron sulfate[J]. Chem. Mater., 2016, 28(15): 5321-5328. |
30 | LI Q, LIU Z, ZHENG F, et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode[J]. Angewandte Chemie, 2018, 57(37): 11918-11923. |
31 | ZHAO W, ZHONG G, MCDONALD M J, et al. Cu3(PO4)2/C composite as a high-capacity cathode material for rechargeable Na-ion batteries[J]. Nano Energy, 2016, 27: 420-429. |
32 | SHAO Y, YUE H, QIAO R, et al. Synthesis and reaction mechanism of novel fluorinated carbon fiber as a high-voltage cathode material for rechargeable Na batteries[J]. Chem. Mater., 2016, 28(4): 1026-1033. |
33 | GREY C P, DUPRÉ N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4493-4512. |
34 | SENGUTTUVAN P, ROUSSE G, SEZNEC V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials, 2011, 23(18): 4109-4111. |
35 | WANG L, SASAKI T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities[J]. Chem. Rev., 2014, 114(19): 9455-9486. |
36 | TSIAMTSOURI M A, ALLAN P K, PELL A J, et al. Exfoliation of layered Na-ion anode material Na2Ti3O7 for enhanced capacity and cyclability[J]. Chemistry of Materials, 2018, 30(5): 1505-1516. |
37 | KO J S, DOAN-NGUYEN V V, KIM H S, et al. Na2Ti3O7 nanoplatelets and nanosheets derived from a modified exfoliation process for use as a high-capacity sodium-ion negative electrode[J]. ACS Appl. Mater. Interfaces, 2017, 9(2): 1416-1425. |
38 | KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Realtime NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26): 9239-9249. |
39 | ZHENG G, XIANG Y, XU L, et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(29): doi: 10.1002/aenm.201801718. |
40 | ZHENG J, HU Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 4113-4120. |
41 | LIANG X, WANG L, JIANG Y, et al. In-channel and in-plane Li ion diffusions in the superionic conductor Li10GeP2S12 probed by solidstate NMR[J]. Chemistry of Materials, 2015, 27(16): 5503-5510. |
42 | YU C, GANAPATH S, VAN ECK E R H, et al. Accessing the bottleneck in all-solid state batteries, lithium-iontransport over the solid-electrolyte-electrode interface[J]. Nature Communications, 2017, 8(1): doi: 10.1038/s41467-017-01187-y. |
43 | CHANG H, ILOTT A J, TREASE N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. J. Am. Chem. Soc., 2015, 137(48): 15209-15216. |
44 | CHIEN P H, FENG X, TANG M, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. J. Phys. Chem. Lett., 2018, 9(8): 1990-1998. |
45 | TANG J A, DUGAR S, ZHONG G, et al. Non-destructive monitoring of charge-discharge cycles on lithium ion batteries using 7Li stray-field imaging[J]. Scientific Reports, 2013, 3: doi: 10.1038/srep02596. |
46 | FULLER C, DITZENBERGER J. Diffusion of lithium into germanium and silicon[J]. Physical Review, 1953, 91(1): doi: 10.1103/PhysRev.91.193. |
47 | WANG D, CHANG Y L, WANG Q, et al. Surface chemistryand electrical properties of germanium nanowires[J]. Journal of the American Chemical Society, 2004, 126 (37): 11602-11611. |
48 | LI D, SENG K H, SHI D, et al. A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(45): 14115-14121. |
49 | WINTER M. The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift für Physikalische Chemie International Journal of Research in Physical Chemistry and Chemical Physics, 2009, 223(10/11): 1395-1406. |
50 | VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. |
51 | AGUBRA V A, FERGUS J W. The formation and stability ofthe solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162. |
52 | XU K. Electrolytes and interphases in Li-ion batteriesand beyond[J]. Chemical Rreviews, 2014, 114(23): 11503-11618. |
53 | DELPUECH N, DUPRÉ N, MAZOUZI D, et al. Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell[J]. Electrochemistry Communications, 2013, 33: 72-75. |
54 | MICHAN A L, LESKES M, GREY C P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: Monitoring the formation of organic decomposition products[J]. Chemistry of Materials, 2016, 28(1): 385-398. |
55 | CHEN S H, ZHONG G M, CAO X, et al. An approach to probe solid electrolyte interface on Si anode by 31P MAS NMR[J]. ECS Electrochemistry Letters, 2013, 2(12): A115-A117. |
56 | ZHOU L, LESKESM, ILOTT A J, et al. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: Application to Li1.08Mn1.92O4 spinels[J]. Journal of Magnetic Resonance, 2013, 234: 44-57. |
57 | TREASE N M, ZHOU L, CHANG H J, et al. In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations[J]. Solid State Nuclear Magnetic Resonance, 2012, 42: 62-70. |
58 | ZHOU LN, LESKESM, LIU T, et al. Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy: Application to Li1.08Mn1.92O4 electrodes[J]. Angewandte Chemie International Edition, 2015, 54(49): 14782-14786. |
59 | HAN J T, ZHU J L, LI Y T, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12[J]. Chemical Communications, 2012, 48(79): 9840-9842. |
60 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
61 | WANG D W, ZHONG G M, DOLOTKO O, et al. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes[J]. Journal of Materials Chemistry A, 2014, 2(47): 20271-20279. |
62 | BOTTKE P, RETTENWANDER D, SCHMIDT W, et al. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12[J]. Chemistry of Materials, 2015, 27(19): 6571-6582. |
63 | WANG D W, ZHONG G M, LI Y X, et al. Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate[J]. Solid State Ionics, 2015, 283: 109-114. |
64 | DOGAN F, JOYCE C, VAUGHEY J T. Formation of silicon local environments upon annealing for silicon anodes: A29Si solid state NMR study[J]. Journal of the Electrochemical Society, 2013, 160(2): A312-A319. |
65 | CATTANEO A S, DUPKE S, SCHMITZ A, et al. Solid state NMR structural studies of the lithiation of nano-silicon: Effects of charging capacities, host-doping, and thermal treatment[J]. Solid State Ionics, 2013, 249: 41-48. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[6] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[7] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[8] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[9] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[10] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[11] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[12] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[13] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
[14] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[15] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||