Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 1906-1917.doi: 10.19799/j.cnki.2095-4239.2021.0441
• Special issue of hydrogen energy and fuel cell • Previous Articles Next Articles
Naijian SONG1(), Mingyuan GUO1, Haoxiong NAN2(), Jia YU3()
Received:
2021-07-31
Revised:
2021-09-10
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Naijian SONG, Mingyuan GUO, Haoxiong NAN, Jia YU. Recent advances in transition metal-based catalysts for oxygen evolution reaction[J]. Energy Storage Science and Technology, 2021, 10(6): 1906-1917.
1 | QADIR S A, AL-MOTAIRI H, TAHIR F, et al. Incentives and strategies for financing the renewable energy transition: A review[J]. Energy Reports, 2021, 7: 3590-3606. |
2 | CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489. |
3 | RAHMAN S T, RHEE K Y, PARK S J. Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives[J]. Nanotechnology Reviews, 2021, 10(1): 137-157. |
4 | RATNAKAR R R, GUPTA N, ZHANG K, et al. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24149-24168. |
5 | ANWAR S, KHAN F, ZHANG Y H, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32284-32317. |
6 | WEI T, LIU B, JIA L C, et al. Perovskite materials for highly efficient catalytic CH4 fuel reforming in solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24441-24460. |
7 | LIU Q F, PAN Z F, WANG E D, et al. Aqueous metal-air batteries: Fundamentals and applications[J]. Energy Storage Materials, 2020, 27: 478-505. |
8 | CHEN F Y, WU Z Y, ADLER Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design[J]. Joule, 2021, 5(7): 1704-1731. |
9 | CAO D F, SHOU H W, CHEN S M, et al. Manipulating and probing the structural self-optimization in oxygen evolution reaction catalysts[J]. Current Opinion in Electrochemistry, 2021, 30: doi: 10.1016/j.coelec.2021.100788. |
10 | WANG X Y, HUO P Y, LIU Y, et al. High-throughput screening of ternary vanadate photoanodes for efficient oxygen evolution reactions: A review of band-gap engineering[J]. Applied Catalysis A: General, 2021, 616: doi: 10.1016/j.apcata.2021.118073. |
11 | MAZZEO A, SANTALLA S, GAVIGLIO C, et al. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts[J]. Inorganica Chimica Acta, 2021, 517: doi: 10.1016/j.ica.2020.119950. |
12 | KUMBHAR V S, LEE H, LEE J, et al. Recent advances in water-splitting electrocatalysts based on manganese oxide[J]. Carbon Resources Conversion, 2019, 2(3): 242-255. |
13 | SUN H N, HE J, HU Z W, et al. Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation[J]. Electrochimica Acta, 2019, 299: 926-932. |
14 | LIU Z, WANG G, ZHU X, et al. Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(12): 4736-4742. |
15 | CHEN R, HUNG S F, ZHOU D, et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction[J]. Advanced Materials, 2019, 31(41): doi: 10.1002/adma.201903909. |
16 | PENG L S, SHAH S S A, WEI Z D. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2018, 39(10): 1575-1593. |
17 | KANG T, KIM J. Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement[J]. Applied Surface Science, 2021, 560: doi: 10.1016/j.apsusc.2021.150035. |
18 | LIU X M, CUI X Y, DASTAFKAN K, et al. Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions[J]. Journal of Energy Chemistry, 2021, 53: 290-302. |
19 | SRINIVASA N, SHREENIVASA L, ADARAKATTI P S, et al. Functionalized Co3O4 graphitic nanoparticles: A high performance electrocatalyst for the oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31380-31388. |
20 | LENG M, HUANG X L, XIAO W, et al. Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites[J]. Nano Energy, 2017, 33: 445-452. |
21 | NAGAJYOTHI P C, RAMARAGHAVULU R, MUNIRATHNAM K, et al. One-pot hydrothermal synthesis: Enhanced MOR and OER performance using low-cost Mn3O4 electrocatalyst[J]. International Journal of Hydrogen Energy, 2021, 46(27): 13946-13951. |
22 | RANI B J, RAVI G, YUVAKKUMAR R, et al. Neutral and alkaline chemical environment dependent synthesis of Mn3O4 for oxygen evolution reaction (OER)[J]. Materials Chemistry and Physics, 2020, 247: doi: 10.1016/j.matchemphys.2020.122864. |
23 | WEI M M, HAN Y Q, LIU Y, et al. Green preparation of Fe3O4 coral-like nanomaterials with outstanding magnetic and OER properties[J]. Journal of Alloys and Compounds, 2020, 831: doi: 10.1016/j.jallcom.2020.154702. |
24 | ISHIHARA T, YOKOE K, MIYANO T, et al. Mesoporous MnCo2O4 spinel oxide for a highly active and stable air electrode for Zn-air rechargeable battery[J]. Electrochimica Acta, 2019, 300: 455-460. |
25 | ZENG K, LI W, ZHOU Y, et al. Multilayer hollow MnCo2O4 microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2020.127831. |
26 | YIN J, JIN J, LIU H B, et al. NiCo2O4-based nanosheets with uniform 4 nm mesopores for excellent Zn-air battery performance[J]. Advanced Materials, 2020, 32(39): doi: 10.1002/adma.202001651. |
27 | FARIA E R, RIBEIRO F M, FRANCO D V, et al. Fabrication and characterisation of a mixed oxide-covered mesh electrode composed of NiCo2O4 and its capability of generating hydroxyl radicals during the oxygen evolution reaction in electrolyte-free water[J]. Journal of Solid State Electrochemistry, 2018, 22(5): 1289-1302. |
28 | TAO L M, GUO P H, ZHU W L, et al. Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2020, 41(12): 1855-1863. |
29 | ALEGRE C, BUSACCA C, DI BLASI A, et al. Toward more efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning[J]. Materials Today Energy, 2020, 18: doi: 10.1016/j.mtener.2020. 100508. |
30 | TONG Y L, LIU H Q, DAI M Z, et al. Metal-organic framework derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting[J]. Chinese Chemical Letters, 2020, 31(9): 2295-2299. |
31 | LIU W, HAN J, YAMADA I, et al. Effects of zinc ions at tetrahedral sites in spinel oxides on catalytic activity for oxygen evolution reaction[J]. Journal of Catalysis, 2021, 394: 50-57. |
32 | HUANG Y, ZHANG S L, LU X F, et al. Trimetallic spinel NiCo2-xFexO4 nanoboxes for highly efficient electrocatalytic oxygen evolution[J]. Angewandte Chemie International Edition, 2021, 60(21): 11841-11846. |
33 | LIU W J, RAO D W, BAO J, et al. Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries[J]. Journal of Energy Chemistry, 2021, 57: 428-435. |
34 | SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
35 | NGUYEN T X, LIAO Y C, LIN C C, et al. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction[J]. Advanced Functional Materials, 2021, 31(27): doi: 10.1002/adfm. 202101632. |
36 | KIM B J, FABBRI E, ABBOTT D F, et al. Functional role of Fe-doping in co-based perovskite oxide catalysts for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(13): 5231-5240. |
37 | WANG H, WANG J, PI Y, et al. Double perovskite LaFexNi1-xO3 nanorods enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(8): 2316-2320. |
38 | XIONG J, ZHONG H, LI J, et al. Engineering highly active oxygen sites in perovskite oxides for stable and efficient oxygen evolution[J]. Applied Catalysis B: Environmental, 2019, 256: doi: 10.1016/j.apcatb.2019.117817. |
39 | POROKHIN S V, NIKITINA V A, AKSYONOV D A, et al. Mixed-cation perovskite La0.6Ca0.4Fe0.7Ni0.3O2.9 as a stable and efficient catalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2021, 11(13): 8338-8348. |
40 | ZHU K Y, WU T, LI M R, et al. Perovskites decorated with oxygen vacancies and Fe-Ni alloy nanoparticles as high-efficiency electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(37): 19836-19845. |
41 | KOU Z K, YU Y, LIU X M, et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured co-Mo2C precatalyst enable water oxidation[J]. ACS Catalysis, 2020, 10(7): 4411-4419. |
42 | HU W K, LIU Q, LV T, et al. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts[J]. Electrochimica Acta, 2021, 381: doi: 10.1016/j.electacta.2021.138276. |
43 | WANG Q, O'HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155. |
44 | YIN H, TANG Z. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage[J]. Chemical Society Reviews, 2016, 45(18): 4873-4891. |
45 | ZHU W J, CHEN W X, YU H H, et al. NiCo/NiCo-OH and NiFe/NiFe-OH core shell nanostructures for water splitting electrocatalysis at large currents[J]. Applied Catalysis B: Environmental, 2020, 278: doi: 10.1016/j.apcatb.2020.119326. |
46 | DIONIGI F, ZHU J, ZENG Z, et al. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides[J]. Angewandte Chemie International Edition, 2021, 60(26): 14446-14457. |
47 | LEE S, BAI L, HU X. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide[J]. Angewandte Chemie International Edition, 2020, 59(21): 8072-8077. |
48 | FERREIRA DE A J, DIONIGI F, MERZDORF T, et al. Evidence of Mars-van-krevelen mechanism in the electrochemical oxygen evolution on Ni-based catalysts[J]. Angew Chem Int Ed Engl, 2021, 60(27): 14981-14988. |
49 | ZHU G X, LI X Y, LIU Y J, et al. Scalable surface engineering of commercial metal foams for defect-rich hydroxides towards improved oxygen evolution[J]. Journal of Materials Chemistry A, 2020, 8(25): 12603-12612. |
50 | LIU Z J, HUANG Y C, WANG Y Y, et al. Quinary defect-rich ultrathin bimetal hydroxide nanosheets for water oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44018-44025. |
51 | WANG B, SHANG J, GUO C, et al. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays[J]. Small, 2019, 15(6): doi: 10.1002/smll.201804761. |
52 | ZHANG J F, ZHANG H J, HUANG Y. Electron-rich NiFe layered double hydroxides via interface engineering for boosting electrocatalytic oxygen evolution[J]. Applied Catalysis B: Environmental, 2021, 297: doi: 10.1016/j.apcatb.2021.120453. |
53 | GU H Y, SHI G S, CHEN H C, et al. Strong catalyst-support interactions in electrochemical oxygen evolution on Ni-Fe layered double hydroxide[J]. ACS Energy Letters, 2020, 5(10): 3185-3194. |
[1] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[2] | Jiahao YANG, Zhaoping SHI, Yibo WANG, Junjie GE, Changpeng LIU, Wei XING. In-situ/operando characterization techniques for oxygen evolution in acidic media [J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890. |
[3] | Wenwu ZOU, Guoxing JIANG, Li DU. Recent advances in covalent organic frameworks (COFs) for electrocatalysis of oxygen electrodes [J]. Energy Storage Science and Technology, 2021, 10(6): 1891-1905. |
[4] | Ziyue ZHU, Dongju FU, Jianjun CHEN, Bianrong ZENG. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. |
[5] | DONG Xu, DU Zhihong, ZHANG Yang, LI Keyun, ZHAO Hailei. SrFeF x O3- x - δ cathode with high catalytic activity for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2020, 9(2): 415-424. |
[6] | XIONG Xiaolin, YUE Jinming, ZHOU Anxing, SUO Liumin, HU Yongsheng, LI Hong, HUANG Xuejie. Electrochemical performance of spinel LiMn2O4 inWater-in-salt aqueouselectrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 375-384. |
[7] | CHEN Xiang, LEI Kaixiang, SUN Hongming, CHENG Fangyi, CHEN Jun. Spinel-type transition metal oxide electrocatalysts for metal-air batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 904-923. |
[8] | WANG Xuelong, XIAO Ruijuan, LI Hong, CHEN Liquan. DFT investigations on antiperovskite Li3OX(X=F,Cl,Br) superionic conductors [J]. Energy Storage Science and Technology, 2016, 5(5): 725-729. |
[9] | JIN Yuhong, WANG Li, SHANG Yuming, GAO Jian, LI Jianjun, HE Xiangming. Development of spinel NiCo2O4 nanostructure material for application in supercapacitors [J]. Energy Storage Science and Technology, 2015, 4(1): 44-54. |
[10] | XU Changzhi, JIN Yingxia, LIU Qingju. Research progress in perovskite solar cells [J]. Energy Storage Science and Technology, 2014, 3(6): 597-601. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||