Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3883-3894.doi: 10.19799/j.cnki.2095-4239.2022.0158
• Energy Storage System and Engineering • Previous Articles Next Articles
Yanji LI1(), Ying CHEN2, Yiyang LI3
Received:
2022-03-28
Revised:
2022-09-13
Online:
2022-12-05
Published:
2022-12-29
Contact:
Yanji LI
E-mail:hdliyanji@ aliyun.com
CLC Number:
Yanji LI, Ying CHEN, Yiyang LI. Design of regenerative braking and power quality harnessed synthetically system in traction substation based on flywheel energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3883-3894.
1 | 周方圆,龚芬,邱文,等.电铁功率融通型电能质量综合治理技术:第十七届中国科协年会综合轨道交通体系学术沙龙论文集[C/OL].广州:中国科学技术协会学会学术部,2015[2022-09-21]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CPFD&dbname=CPFDLAST 2015&filename=DIDD201505006038&uniplatform=NZKPT&v=aX Kd4EfUUTvFRynyJXoYtBEnh0H3ZFfRgInRMjkx5q233bjVbpBB-vlvM3 EbHyd6uBW3LZVpkt4%3d. |
2 | 李蓉蓉. 高速铁路牵引变电所储能技术研究[D]. 成都: 西南交通大学, 2019. |
LI R R. Research on energy storage technology of traction substation in high speed railway[D]. Chengdu: Southwest Jiaotong University, 2019. | |
3 | 王大杰, 赵思锋, 黄小红, 等. 飞轮储能用于铁路牵引负荷削峰填谷的实验验证[J]. 电气化铁道, 2018, 29(S1): 93-97, 101. |
WANG D J, ZHAO S F, HUANG X H, et al. Experimental verification of flywheel energy storage system applied in railway traction load for peak load shifting[J]. Electric Railway, 2018, 29(S1): 93-97, 101. | |
4 | 王佩, 朱辉, 李骑, 等. 电气化铁路投入对南疆电网电能质量影响分析[J]. 电工技术, 2021(23): 57-58, 61. |
WANG P, ZHU H, LI Q, et al. Analysis of influence of electrified railway put into operation on power quality of southern Xinjiang power grid[J]. Electric Engineering, 2021(23): 57-58, 61. | |
5 | 张兴, 阮鹏, 张柳丽, 等. 飞轮储能装置性能测试[J]. 储能科学与技术, 2021, 10(5): 1674-1678. |
ZHANG X, RUAN P, ZHANG L L, et al. Performance test of flywheel energy storage device[J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. |
[1] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[2] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. |
[3] | Yong ZHOU, Xiangyu CHEN, Lin JIAN, Fuhui WANG, Degao TIAN, Chuanjun HAN. Design and experimental research on flywheel energy storage system of beam pumping unit [J]. Energy Storage Science and Technology, 2022, 11(2): 593-599. |
[4] | Shusheng LI, Jialiang WANG, Guangjun LI, Dachun WANG, Yadong CUI. Demonstration applications in wind solar energy storage field based on MW flywheel array system [J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. |
[5] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[6] | Qingxiang XU, Wei TENG, Xin WU, Yibing LIU, Shuangyin LIANG. Capacity configuration method of flywheel storage system for suppressing power fluctuation of wind farms [J]. Energy Storage Science and Technology, 2022, 11(12): 3906-3914. |
[7] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[8] | Hao QIN, Lijun QIN, Xuechen BAI, Cong LI. A control strategy of flywheel energy storage system participating frequency regulation with pumped storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3915-3925. |
[9] | Suhang YU, Wenyong GUO, Yuping TENG, Wenju SANG, Yang CAI, Chenyu TIAN. A review of the structures and control strategies for flywheel bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642. |
[10] | Xingjian DAI, Dongxu HU, Zhilai ZHANG, Haisheng CHEN, Yangli ZHU. Analysis and application of high strength alloy steel flywheel structure and material [J]. Energy Storage Science and Technology, 2021, 10(5): 1667-1673. |
[11] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Gangling TIAN, Baohong ZHU. Performance test of flywheel energy storage device [J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. |
[12] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[13] | Hong LI, Jiangwei CHU, Shufa SUN, Honggang LI. Characteristics of vehicle-mounted electromagnetic coupling flywheel energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1687-1693. |
[14] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Juan LI, Gangling TIAN, Dongxu HU, Baohong ZHU. Application analysis of flywheel energy storage in thermal power frequency modulation in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. |
[15] | Chen LAN, Wenyan LI. Stress characteristics of two kinds of variable thickness hollow energy storage flywheels [J]. Energy Storage Science and Technology, 2021, 10(3): 1080-1087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||