Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3510-3520.doi: 10.19799/j.cnki.2095-4239.2022.0319
• Energy Storage Materials and Devices • Previous Articles Next Articles
Bin XU1(), Rui WANG2(), Wei SU1(), Guangli HE2, Ping MIAO2
Received:
2022-06-13
Revised:
2022-07-14
Online:
2022-11-05
Published:
2022-11-09
Contact:
Rui WANG, Wei SU
E-mail:15733011361@163.com;rui.wang.ej@chnenergy.com.cn;suweihb@tju.edu.cn
CLC Number:
Bin XU, Rui WANG, Wei SU, Guangli HE, Ping MIAO. Research progress and prospect of key materials of proton exchange membrane water electrolysis[J]. Energy Storage Science and Technology, 2022, 11(11): 3510-3520.
1 | CHI J, YU H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. |
2 | RASHID M D, MESFER M K, NASSEM H, et al. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis[J/OL]. International Journal of Engineering and Advanced Technology, 2015, 4(3). https://www.ijeat.org/portfolio-item/C3749024315/ |
3 | KUMAR S S, HIMABINDU V. Hydrogen production by PEM water electrolysis-A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. |
4 | BABIC U, SUERMANN M, BÜCHI F N, et al. Critical review-Identifying critical gaps for polymer electrolyte water electrolysis development[J]. Journal of the Electrochemical Society, 2017, 164(4): F387-F399. |
5 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
6 | FENG Q, YUAN X Z, LIU G Y, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2017, 366: 33-55. |
7 | TAIBI E, MIRANDA R, CARMO M. Green hydrogen cost reduction[R/OL]. International Renewable Energy Agency (IRENA), 2020[2021-12-01]. https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction. |
8 | CHENG J B, ZHANG H M, CHEN G B, et al. Study of IrxRu1- xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis[J]. Electrochimica Acta, 2009, 54(26): 6250-6256. |
9 | SIRACUSANO S, DIJK N V, PAYNE-JOHNSON E, et al. Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers[J]. Applied Catalysis B: Environmental, 2015, 164: 488-495. |
10 | XU C B, MA L R, LI J L, et al. Synthesis and characterization of novel high-performance composite electrocatalysts for the oxygen evolution in solid polymer electrolyte (SPE) water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(4): 2985-2992. |
11 | JIANG G, YU H M, HAO J K, et al. An effective oxygen electrode based on Ir0.6Sn0.4O2 for PEM water electrolyzers[J]. Journal of Energy Chemistry, 2019, 39: 23-28. |
12 | PUTHIYAPURA V K, MAMLOUK M, PASUPATHI S, et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser[J]. Journal of Power Sources, 2014, 269: 451-460. |
13 | ZHAO S, STOCK A, RASIMICK B, et al. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers[J]. Journal of the Electrochemical Society, 2018, 165(2): F82. |
14 | 李佳坤. 质子交换膜(PEM)水电解制氢用新型析氧电极研究[D]. 长沙: 湖南大学, 2019. |
LI J K. Research on novel oxygen evolution electrode for proton exchange membrane water electrolysis[D]. Changsha: Hunan University, 2019. | |
15 | SUI S, MA L R, ZHAI Y C. Investigation on the proton exchange membrane water electrolyzer using supported anode catalyst[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(1): 8-11. |
16 | PHAM C V, BÜHLER M, KNÖPPEL J, et al. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Applied Catalysis B: Environmental, 2020, 269: doi: 10.1016/j.apcatb.2020.118762. |
17 | ZHU J H, WEI M, MENG Q H, et al. Ultrathin-shell IrCo hollow nanospheres as highly efficient electrocatalysts towards the oxygen evolution reaction in acidic media[J]. Nanoscale, 2020, 12(47): 24070-24078. |
18 | PARK J, SA Y J, BAIK H, et al. Iridium-based multimetallic Nanoframe@Nanoframe structure: An efficient and robust electrocatalyst toward oxygen evolution reaction[J]. ACS Nano, 2017, 11(6): 5500-5509. |
19 | LEWINSKI K, VLIET D V D, LUOPA S M. NSTF advances for PEM electrolysis-The effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers[J]. ECS transactions, 2015, 69(17):893-917. |
20 | JIANG G, YU H M, LI Y H, et al. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15073-15082. |
21 | SHI Y X, PAN H L, XIA J Y, et al. Designing of highly efficient oxygen evolution reaction electrocatalysts utilizing A correlation factor: Theory and experiment[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30533-30541. |
22 | CHONG L N, WANG H, LIU D J. PGM-Free Oer Catalysts for PEM Electrolyzer Application[C]//ECS Meeting Abstracts. IOP Publishing, 2019 (29): 1443. |
23 | KIRSHENBAUM M J, RICHTER M, DASOG M. Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst[J]. ChemCatChem, 2019, 11(16): 3877-3881. |
24 | SIRACUSANO S, BAGLIO V, STASSI A, et al. Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis[J]. Journal of Membrane Science, 2014, 466: 1-7. |
25 | SUN S C, SHAO Z G, YU H M, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520. |
26 | JANG I Y, KWEON O H, KIM K E, et al. Application of polysulfone (PSf)-and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis[J]. Journal of Membrane Science, 2008, 322(1): 154-161. |
27 | 唐金库, 巴俊洲, 蒋亚雄, 等. 等离子体刻蚀对Nafion膜性能的影响[J]. 舰船科学技术, 2007, 29(6): 135-138. |
TANG J K, BA J Z, JIANG Y X, et al. Effects of plasma etching on Nafion membrane performances[J]. Ship Science and Technology, 2007, 29(6): 135-138. | |
28 | 史言, 杨芬, 胡晓宏, 等. Nafion膜的处理对PEM水电解器中氧气纯度的影响[J]. 航天医学与医学工程, 2013, 26(5): 391-393. |
SHI Y, YANG F, HU X H, et al. Effects of nafion membrane modification on oxygen purity in PEM water electrolyze[J]. Space Medicine & Medical Engineering, 2013, 26(5): 391-393. | |
29 | BUKOLA S, CREAGER S. Graphene-based proton transmission and hydrogen crossover mitigation in electrochemical hydrogen pump cells[J]. ECS Transactions, 2019, 92(8): 439. |
30 | PARK J, KANG Z Y, BENDER G, et al. Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers[J]. Journal of Power Sources, 2020, 479: doi:10.1016/j.jpowsour.2020.228819 |
31 | KIM T H, YI J Y, JUNG C Y, et al. Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(1): 478-485. |
32 | XIE Z Q, YU S L, YANG G Q, et al. Optimization of catalyst-coated membranes for enhancing performance in proton exchange membrane electrolyzer cells[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1155-1162. |
33 | MAUGER S A, NEYERLIN K C, YANG-NEYERLIN A C, et al. Gravure coating for roll-to-roll manufacturing of proton-exchange-membrane fuel cell catalyst layers[J]. Journal of the Electrochemical Society, 2018, 165(11): F1012-F1018. |
34 | MAYYAS A, MANN M. Emerging manufacturing technologies for fuel cells and electrolyzers[J]. Procedia Manufacturing, 2019, 33: 508-515. |
35 | ITO H, MAEDA T, NAKANO A, et al. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer[J]. Electrochimica Acta, 2013, 100: 242-248. |
36 | 张萍俊, 孙树成, 俞红梅, 等. 不同材料作为阳极扩散层对质子交换膜水电解池性能的影响[J]. 可再生能源, 2019, 37(10): 1429-1433. |
ZHANG P J, SUN S C, YU H M, et al. Influence of different materials as anode diffusion layer on performance of PEMWE[J]. Renewable Energy Resources, 2019, 37(10): 1429-1433. | |
37 | KANG Z Y, MO J K, YANG G Q, et al. Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting[J]. Energy & Environmental Science, 2017, 10(1): 166-175. |
38 | KANG Z Y, YANG G Q, MO J K, et al. Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14618-14628. |
39 | MO J K, DEHOFF R R, PETER W H, et al. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3128-3135. |
40 | TOOPS T J, BRADY M P, ZHANG F Y, et al. Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells[J]. Journal of Power Sources, 2014, 272: 954-960. |
41 | LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities[J]. Electrochimica Acta, 2016, 210: 502-511. |
42 | YANG G Q, MO J K, KANG Z Y, et al. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting[J]. Applied Energy, 2018, 215: 202-210. |
43 | BAREIß K, DE LA RUA C, MÖCKL M, et al. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems[J]. Applied Energy, 2019, 237: 862-872. |
44 | 刘晓天, 尹永利, 李明宇, 等. 新型低成本PEM水电解槽的研制与测试[J]. 航天医学与医学工程, 2020, 33(4): 350-355. |
LIU X T, YIN Y L, LI M Y, et al. Development and test of a low cost new PEM water electrolyzer[J]. Space Medicine & Medical Engineering, 2020, 33(4): 350-355. | |
45 | 邓庆. 一种纯水制氢PEM电解槽: CN214937843U[P], 2021-11-30 |
DENG Q. A pure water to hydrogen PEM electrolyzer: CN214937843U[P], 2021-11-30 | |
46 | 黄天旗, 黄立. 顶丝反压式PEM电解槽机构: CN216427426U[P]. 2022-05-03. |
HUANG T Q, HUANG L. Jackscrew back pressure type PEM electrolytic bath mechanism: CN216427426U[P]. 2022-05-03. | |
47 | KIM H, PARK M, LEE K S. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2596-2609. |
48 | ESPINOSA-LÓPEZ M, DARRAS C, POGGI P, et al. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer[J]. Renewable Energy, 2018, 119: 160-173. |
49 | BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
50 | AßMANN P, GAGO A S, GAZDZICKI P, et al. Toward developing accelerated stress tests for proton exchange membrane electrolyzers[J]. Current Opinion in Electrochemistry, 2020, 21: 225-233. |
[1] | Hao YIN, Zhiwei TANG, Hao WANG, Yi JIN, Yulong DING. Investigation on a time-sharing heating system using a high-density composite phase change heat storage material-an electric boiler [J]. Energy Storage Science and Technology, 2022, 11(9): 3003-3010. |
[2] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[3] | Jin XU, Xian DING, Yongli GONG, Guangli HE, Ting HU. Economic analysis of hydrogen production plant with water electrolysis [J]. Energy Storage Science and Technology, 2022, 11(7): 2374-2385. |
[4] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[5] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[6] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[7] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[8] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[9] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[10] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[11] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[12] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[13] | Zan DUAN, Lingfang LI, Penghui LIU, Dongfang XIAO. Review on advanced preparation methods and energy storage mechanism of MXenes as energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 982-990. |
[14] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[15] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||