Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3748-3758.doi: 10.19799/j.cnki.2095-4239.2022.0368
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yang WANG, Yuxin ZHANG, Xu LU, Long LIU()
Received:
2022-06-30
Revised:
2022-07-26
Online:
2022-12-05
Published:
2022-12-29
Contact:
Long LIU
E-mail:liulong@hrbeu.edu.cn
CLC Number:
Yang WANG, Yuxin ZHANG, Xu LU, Long LIU. Performance of an NCM811 battery based on a lithium-ion embedding model[J]. Energy Storage Science and Technology, 2022, 11(12): 3748-3758.
Table 2
Partial electrochemical parameters of the battery[13-15]"
参数 | NCM811 | NCM523 | NCA |
---|---|---|---|
负极材料 | 石墨 | 石墨 | Li4Ti5O12 |
隔膜材料 | PP/PE | PP/PE | PP/PE |
正极材料 | Li(Ni0.8Co0.1Mn0.1)O2 | Li(Ni0.5Co0.2Mn0.3)O2 | Li(Ni0.8Co0.15Al0.05)O2 |
粒子半径/μm | 2 | 8 | 2 |
正极最大锂离子浓度/(mol/m3) | 50 060 | 31 389 | 48 000 |
负极最大锂离子浓度/(mol/m3) | 31 507 | 31 507 | 22 852 |
正极初始锂离子浓度/(mol/m3) | 13 111 | 10 026 | 13 000 |
负极初始锂离子浓度/(mol/m3) | 24 048 | 25 616 | 17 120 |
固体活性材料体积分数(负极/电解液/正极) | 0.6/—/0.6 | 0.6/—/0.6 | 0.6/—/0.6 |
固相电导率/(S/m) | 0.17 | 3.8 | 91 |
固相扩散系数/(m2/s) | 见 | 见 | 见 |
1 | 张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397. |
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397. | |
2 | 张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228. |
ZHANG M J, YANG K, DUAN S N, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltage Engineering, 2017, 43(7): 2221-2228. | |
3 | 王康康, 高飞, 杨凯, 等. 不同健康状态等级的储能磷酸铁锂电池熵变系数及放电产热研究[J]. 高电压技术, 2017, 43(7): 2241-2248. |
WANG K K, GAO F, YANG K, et al. Research of LiFePO4/C energy storage batteriesê entropy coefficient and discharge heat generation based on the state of health[J]. High Voltage Engineering, 2017, 43(7): 2241-2248. | |
4 | 张海林. 高比能量锂离子电池材料及全电池电极的研究[D]. 上海: 上海大学, 2020. |
ZHANG H L. Study on electrode materials and full cell electrode technology of high specific energy lithium ion batteries[D]. Shanghai: Shanghai University, 2020. | |
5 | 索鎏敏, 李泓. 锂离子电池过往与未来[J]. 物理, 2020, 49(1): 17-23. |
SUO L M, LI H. The past, present and future of lithium ion batteries[J]. Physics, 2020, 49(1): 17-23. | |
6 | 黄云辉. 锂离子电池: 20世纪最重要的发明之一[J]. 科学通报, 2019, 64(36): 3811-3816. |
HUANG Y H. Lithium-ion battery: One of the most important inventions in the 20th century[J]. Chinese Science Bulletin, 2019, 64(36): 3811-3816. | |
7 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
8 | 孙艳霞, 周园, 申月, 等. 动力型锂离子电池富锂三元正极材料研究进展[J]. 化学通报, 2017, 80(1): 34-40. |
SUN Y X, ZHOU Y, SHEN Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery[J]. Chemistry, 2017, 80(1): 34-40. | |
9 | 李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2): 513-527. |
LI Z M, LI B, FENG D, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 513-527. | |
10 | 王爽, 杜志明, 张泽林, 等. 锂离子电池安全性研究进展[J]. 工程科学学报, 2018, 40(8): 901-909. |
WANG S, DU Z M, ZHANG Z L, et al. Research progress on safety of lithium-ion batteries[J]. Chinese Journal of Engineering, 2018, 40(8): 901-909. | |
11 | 李亚楠, 潘芳芳, 赵金保. 锂离子电池针刺安全性的研究进展[J]. 电池, 2022, 52(2): 228-231. |
LI Y N, PAN F F, ZHAO J B. Research progress in nail penetration safety for Li-ion battery[J]. Battery Bimonthly, 2022, 52(2): 228-231. | |
12 | 刘慧, 张彤, 盖福祥, 等. 混合动力汽车三元锂电池基本性能的研究[J]. 农业装备与车辆工程, 2019, 57(11): 92-95. |
LIU H, ZHANG T, GAI F X, et al. Study on basic performance of NCM-Li battery for HEV[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(11): 92-95. | |
13 | 李夔宁, 谢运成, 谢翌, 等. 基于电化学热耦合模型的富镍锂离子电池产热分析[J]. 储能科学与技术, 2021, 10(3): 1153-1162. |
LI K N, XIE Y C, XIE Y, et al. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model[J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. | |
14 | 杨坤. 锂离子电池热失控行为研究[D]. 武汉: 江汉大学, 2021. |
YANG K. Research on thermal runaway behavior of lithium-ion batteries[D]. Wuhan: Jianghan University, 2021. | |
15 | 杜光超. 三元锂离子电池高温热失控试验与仿真研究[D]. 青岛: 青岛大学, 2020. |
DU G C. High temperature thermal runaway experiment and simulation research of ternary lithium-ion battery. Qingdao: Qingdao University, 2020. | |
16 | 靳成杰, 尹乐乐, 王振新, 等. 不同类型NCM三元锂离子电池性能分析[J]. 电源技术, 2019, 43(10): 1637-1640. |
JIN C J, YIN L L, WANG Z X, et al. Performance analysis of different types of NCM ternary lithium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(10): 1637-1640. | |
17 | 王鹏, 王立文, 王帅, 等. 温度对18650三元锂电池放电容量的影响[J]. 技术与市场, 2018, 25(11): 10-14. |
WANG P, WANG L W, WANG S, et al. The effect of temperature on the discharge capacity of 18650 ternary lithium batteries [J]. Technology and Market, 2018, 25(11): 10-14. | |
18 | 李坤. 锂离子动力电池热—电化学耦合特性分析及有限元模拟[D]. 北京: 北京理工大学, 2016. |
LI K. Study on electrochemical thermal analysis and finite element modelling for lithium ion power battery[D]. Beijing: Beijing Institute of Technology, 2016. | |
19 | 陶欢. 锂离子动力电池热失控实验与模拟研究[D]. 武汉: 华中科技大学, 2017. |
TAO H. Experimental and simulation study on thermal runaway of lithium-ion battery[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
20 | 汪涛, 于维珂. 高镍三元材料匹配钛酸锂负极电池的性能[J]. 电池, 2021, 51(5): 498-501. |
WANG T, YU W K. Performance of high nickel ternary material matching lithium titanate anode battery[J]. Battery Bimonthly, 2021, 51(5): 498-501. | |
21 | 黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019. |
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019. | |
22 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
23 | 董海斌, 张少禹, 李毅, 等. NCM811高比能锂离子电池热失控火灾特性[J]. 储能科学与技术, 2019, 8(S1): 65-70. |
DONG H B, ZHANG S Y, LI Y, et al. Thermal runaway fire characteristics of lithium ion batteries with high specific energy NCM811[J]. Energy Storage Science and Technology, 2019, 8(S1): 65-70. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[5] | Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. |
[6] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[7] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[8] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[9] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[10] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[11] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[12] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[13] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[14] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[15] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||