Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3287-3298.doi: 10.19799/j.cnki.2095-4239.2023.0488
• Energy Storage Materials and Devices • Next Articles
Youman ZHAO1(), Yang HUANG1,2, Li XIONG1, Haijun LIN1
Received:
2023-07-17
Revised:
2023-08-02
Online:
2023-11-05
Published:
2023-11-16
Contact:
Youman ZHAO
E-mail:youymanm@163.com
CLC Number:
Youman ZHAO, Yang HUANG, Li XIONG, Haijun LIN. From material structural feature to the functional feature[J]. Energy Storage Science and Technology, 2023, 12(11): 3287-3298.
Fig. 1
(a), (b) The unit cell of LZPS viewed from different directions. The LiS4, ZnS4, PS4 and interstitial site are colored by dark green, blue, cyan and pastel orange. The sulfur is labeled with yellow spheres. (c) The local environment involving the lithium hopping in the LZPS structure which is extracted from the red box in (b). (d) The diffusion path in the octahedral cage determined by NEB calculation"
Fig. 2
(a) The calculated energy landscape of diffusion path from the Li site to: the interstitial in the stoichiometry LZPS (blue color). The interstitial in a Li-Zn substitution local environment (green color). The Zn site in the same layer (orange color). (All the migration paths are scaled to the same length.) (b) The calculated energy landscape of diffusion path from the Li site to the interstitial site in a perfect bcc sulfur framework"
Fig. 8
Ideal body-centered-tetragonal (bct) lattice (red) overlaid on the sulfur framework (yellow) of β-Li2ZnGeS4 (a) and Li2ZnSiS4 (b). The root-mean-square (rms) distances from the S atoms in the β-Li2ZnGeS4 and 0.56 ? in the Li2ZnSiS4 to the idealized bcc position are 0.53 ? and 0.56 ? respectively"
Fig. 9
The calculated energy landscape of diffusion path in the LZGS from the Li site to the adjacent vacancy through the Oct(2LiS4-PS4) cage (orange color). The Oct(2LiS4-ZnS4) cage (blue color). The Tet(2LiS4-ZnS4-PS4) cage (green color). The Oct(2LiS4-VacS4) cage (black color). The Tet(2LiS4-VacS4-PS4) cage (red color)"
1 | SUN Y K. Direction for development of next-generation lithium-ion batteries[J]. ACS Energy Letters, 2017, 2(12): 2694-2695. |
2 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
3 | LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819. |
4 | LIANG J N, LUO J, SUN Q, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334. |
5 | HE Y M, LU C Y, LIU S, et al. Interfacial incompatibility and internal stresses in all-solid-state lithium ion batteries[J]. Advanced Energy Materials, 2019, 9(36): doi: 10.1002/aenm.201901810. |
6 | LV F, WANG Z Y, SHI L Y, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources, 2019, 441: 227175. |
7 | YU C, GANAPATHY S, VAN ECK E R H, et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface[J]. Nature Communications, 2017, 8(1): 1086. |
8 | WAN J, XIE J, MACKANIC D G, et al. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries[J]. Materials Today Nano, 2018, 4: 1-16. |
9 | LIU L L, XU J R, WANG S, et al. Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1(C): 100010. |
10 | HAYASHI A, SAKUDA A, TATSUMISAGO M. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries[J]. Frontiers in Energy Research, 2016, 4: 25. |
11 | LIU D, ZHU W, FENG Z, et al. Recent progress in sulfide-based solid electrolytes for Li-ion batteries[J]. Materials Science and Engineering: B, 2016, 213: 169-176. |
12 | YU C A, GANAPATHY S, DE KLERK N J J, et al. Unravelling Li-ion transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery[J]. Journal of the American Chemical Society, 2016, 138(35): 11192-11201. |
13 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
14 | KUHN A, GERBIG O, ZHU C B, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674. |
15 | BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: An affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697. |
16 | SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631. |
17 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. |
18 | Clement R J, Lun Z, Ceder G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes[J]. Energy & environmental science. 2020, 13(2): 345-373. |
19 | HE X F, BAI Q, LIU Y S, et al. Crystal structural framework of lithium super-ionic conductors[J]. Advanced Energy Materials, 2019, 9(43): doi: 10.1002/aenm.201902078. |
20 | RICHARDS W D, WANG Y, MIARA L J, et al. Design of Li1+2 xZn1- xPS4, a new lithium ion conductor[J]. Energy & Environmental Science, 2016, 9(10): 3272-3278. |
21 | SUZUKI N, RICHARDS W D, WANG Y, et al. Synthesis and electrochemical properties of I-4-type Li1+2 xZn1- xPS4 solid electrolyte[J]. Chemistry of Materials, 2018, 30(7): 2236-2244. |
22 | KAUP K, LALÈRE F, HUQ A, et al. Correlation of structure and fast ion conductivity in the solid solution series Li1+2 xZn1- xPS4[J]. Chemistry of Materials, 2018, 30(3): 592-596. |
23 | SHYUE P O, WILLIAM D R, ANUBHAV J, et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013, 68: 314-319. |
24 | KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561. |
25 | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. |
26 | BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. |
27 | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
28 | KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17): 13115-13118. |
29 | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
30 | HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901. |
31 | HENKELMAN G, JÓNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985. |
32 | TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5. |
33 | TOGO A, CHAPUT L, TANAKA I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2[J]. Physical Review B, 2010, 81(17): 174301. |
34 | VERLET L. Computer "experiments" on classical fluids. I. thermodynamical properties of lennard-jones molecules[J]. Physical Review, 1967, 159(1): 98-103. |
35 | NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. |
36 | HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697. |
37 | STAUFFER D, AHARONY A. Introduction to percolation theory[M]. London: Taylor & Francis, 2018. |
38 | EWING R, HUNT A. Percolation theory for flow in porous media[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. |
39 | NEWMAN M E, ZIFF R M. Efficient Monte Carlo algorithm and high-precision results for percolation[J]. Physical Review Letters, 2000, 85(19): 4104-4107. |
40 | CEDER G, ONG S P, WANG Y. Predictive modeling and design rules for solid electrolytes[J]. MRS Bulletin, 2018, 43(10): 746-751. |
41 | MEHRER, H. Diffusion in solids: Fundamentals, methods, materials, diffusion-controlled processes[J]. Springer series in solid state science, 2007, 155. |
42 | HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: 15893. |
43 | URBAN A, LEE J, CEDER G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes[J]. Advanced Energy Materials, 2014, 4(13): 1400478. |
44 | LEE J, URBAN A, LI X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-522. |
45 | JI H W, URBAN A, KITCHAEV D A, et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries[J]. Nature Communications, 2019, 10: 592. |
46 | URBAN A, MATTS I, ABDELLAHI A, et al. Computational design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries[J]. Advanced Energy Materials, 2016, 6(15): 1600488. |
47 | HUANG Y, LIU L, ZHU Y Y, et al. A new model on cation distribution in cation-disordered Li1+ xTM1-xO2 cathodes[J]. Solid State Ionics, 2020, 351: 115341. |
48 | HOMMA K, YONEMURA M, KOBAYASHI T, et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4[J]. Solid State Ionics, 2010, 182(1): 53-58. |
49 | IIKUBO S, SHIMOYAMA K, KAWANO S, et al. Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure[J]. AIP Advances, 2018, 8(1): 15008. |
50 | KIM J S, JUNG W D, CHOI S J, et al. Thermally induced S‑sublattice transition of Li3PS4 for fast lithium-ion conduction[J]. J. Phys. Chem. Lett. 2018, 9, 5592-5597. |
51 | YANG J J, TSE J S. First-principles molecular simulations of Li diffusion in solid electrolytes Li3PS4[J]. Computational Materials Science, 2015, 107: 134-138. |
52 | LIM M S, JHI S H. First-principles study of lithium-ion diffusion in β-Li3PS4 for solid-state electrolytes[J]. Current Applied Physics, 2018, 18(5): 541-545. |
53 | HUANG Y, WU K, CHENG J N, et al. Li2ZnGeS4: A promising diamond-like infrared nonlinear optical material with high laser damage threshold and outstanding second-harmonic generation response[J]. Dalton Transactions, 2019, 48(14): 4484-4488. |
54 | LI G M, CHU Y, ZHOU Z X. From AgGaS2 to Li2ZnSiS4: Realizing impressive high laser damage threshold together with large second-harmonic generation response[J]. Chemistry of Materials, 2018, 30(3): 602-606. |
55 | ZHOU L D, ASSOUD A, SHYAMSUNDER A, et al. An entropically stabilized fast-ion conductor: Li3.25[Si0.25P0.75]S4[J]. Chemistry of Materials, 2019, 31(19): 7801-7811. |
56 | HARM S, HATZ A K, MOUDRAKOVSKI I, et al. Lesson learned from NMR: Characterization and ionic conductivity of LGPS-like Li7SiPS8[J]. Chemistry of Materials, 2019, 31(4): 1280-1288. |
57 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON the Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746. |
58 | LEKSE J W, LEVERETT B M, LAKE C H, et al. Synthesis, physicochemical characterization and crystallographic twinning of Li2ZnSnS4[J]. Journal of Solid State Chemistry, 2008, 181(12): 3217-3222. |
59 | ZHANG J H, CLARK D J, BRANT J A, et al. α -Li2ZnGeS4: A wide-bandgap diamond-like semiconductor with excellent balance between laser-induced damage threshold and second harmonic generation response[J]. Chemistry of Materials, 2020, 32(20): 8947-8955. |
60 | LI G M, CHU Y, LI J, et al. Li2CdSiS4, a promising IR NLO material with a balanced Eg and SHG response originating from the effect of Cd with d10 configuration[J]. Dalton Transactions, 2020, 49(6): 1975-1980. |
61 | LI Y L, FAN W L, SUN H G, et al. Electronic, optical and lattice dynamic properties of the novel diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4[J]. Journal of Physics: Condensed Matter, 2011, 23(22): 225401. |
62 | BRANT J A, CLARK D J, KIM Y S, et al. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors[J]. Inorganic Chemistry, 2015, 54(6): 2809-2819. |
[1] | Zhenyi WANG, Sai ZHANG, Shiwang HU. Fractal modeling and thermal chemical coupling of electrode microstructure of lithium battery [J]. Energy Storage Science and Technology, 2022, 11(11): 3574-3582. |
[2] | Suxia SHAO, Zhendong ZHU, Wen PENG, Juan DAI, Hao WU. Variation and mechanism of lithium-ion concentration in the liquid phase during charging and discharging cycles [J]. Energy Storage Science and Technology, 2021, 10(3): 1187-1195. |
[3] | LI Zhao1, SUN Xianzhong1,2, LI Chen1,2, ZHANG Xiong1,2, WANG Kai1,2, LIU Wenjie1,3, ZHANG Cheng2, MA Yanwei1,2. Application of mesoporous graphene/carbon black composite conductive additive in lithium-ion capacitor anode [J]. Energy Storage Science and Technology, 2017, 6(6): 1264-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||