Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1606-1619.doi: 10.19799/j.cnki.2095-4239.2023.0934
• Energy Storage System and Engineering • Previous Articles Next Articles
Zipan NIE1(), Liye XIAO1,2(), Qingquan QIU1, Jingye ZHANG1
Received:
2023-12-22
Revised:
2024-01-03
Online:
2024-05-28
Published:
2024-05-28
Contact:
Liye XIAO
E-mail:znie@mail.iee.ac.cn;xiao@mail.iee.ac.cn
CLC Number:
Zipan NIE, Liye XIAO, Qingquan QIU, Jingye ZHANG. Overview of the development of underground pumped hydro storage[J]. Energy Storage Science and Technology, 2024, 13(5): 1606-1619.
Table 2
Design and implementation of some pumped storage power stations based on abandoned mines"
抽水蓄能 电站名称 | 西班牙Asturian | 南非FWR | 美国Mount hope | 德国Prosper-Haniel | 德国Grund ore mine |
---|---|---|---|---|---|
水头/m | 300~600 | 1200/1500(两级) | 810 | 560 | 700 |
库容/m3 | 17万 | 100万 | 620万 | 60万 | 24~26万 |
功率/MW | 23.52 | 水泵:955水轮机:1230 | 2040 | 200 | 100 |
储能量/MWh | 141 | 6800 | / | 820 | 400 |
实施现状 | 完成设计 | 完成设计 | 计划先建设1000 MW | 提出计划 | 提出计划 |
废弃矿类型 | 煤矿 | 金矿 | 铁矿 | 煤矿 | 铅锌矿 |
Table 3
Comprehensive comparison between reversible pump turbine and ternary set"
参数和功能 | 定速可逆式 | 调速可逆式 | 三机式 | |
---|---|---|---|---|
额定功率 | 可达500 MW | 可达500 MW | 可达300 MW | |
额定水头 | 单级可达700 m 多级可达1000 m | 单级可达700 m 多级可达1000 m | 可达1500 m | |
技术成熟度 | 成熟 | 成熟 | 成熟 | |
发电状态(水轮机工作状态)[ | 功率输出(占额定功率的百分比/%) | 30%~100% | 20%~100% | 0~100% |
静止到水轮机模式的启动时间/s | 70 | 75~85 | 65 | |
水轮机到水泵模式的转换时间/s | 240~420 | 240~415 | 25 | |
调频 | 具备 | 具备 | 具备 | |
旋转备用 | 具备 | 具备 | 具备 | |
功率斜坡变化/负荷跟随 | 具备 | 具备 | 具备 | |
输出无功/电压支撑 | 具备 | 具备 | 具备 | |
发电机切机 | 具备 | 具备 | 具备 | |
储能状态(水泵工作状态)[ | 功率输入(占额定功率的百分比/%) | 100% | 60%~100% (75%~125%) | 0~100% |
静止到水泵模式的启动时间/s | 160~340 | 160~230 | 80 | |
水泵到水轮机模式的转换时间/s | 90~190 | 90~190 | 25 | |
调频 | 不具备 | 具备 | 具备 | |
旋转备用 | 具备 | 具备 | 具备 | |
功率斜坡变化/负荷跟随 | 不具备 | 具备 | 具备 | |
输出无功/电压支撑 | 具备 | 具备 | 具备 | |
减载(水泵切机) | 具备 | 具备 | 具备 |
Table 6
Comparison of pumped storage based on abandoned mines and excavated tunnels"
比较因素 | 废弃矿井改造的地下抽水蓄能[ | 人工挖掘地下空间的地下抽水蓄能 | |
---|---|---|---|
经济性 | 建造成本 | 矿井关停时间和状况不同,改造和建造成本不可估计,有研究表明其成本约为16838元/kW | 与常规抽水蓄能基本相当,成本为7100~7800元/kW |
运维成本 | 矿井围岩稳定性差,长期高频次流水冲蚀,运维成本高 | 地下致密岩层围岩稳定性好,隧洞建造标准高,运维成本低 | |
技术障碍 | 水头 | 受矿井巷道深度限制 | 不受限制 |
可用空间 | 巷道可用,采空区很难被利用,蓄水空间受限 | 蓄水空间不受限制 | |
密封稳定性 | 矿井存在岩石或覆土塌陷风险,密封性差 | 致密岩层密封和稳定性好 | |
水质 | 矿井中的物质溶于水,污染水体 | 隧洞建造标准高,不污染水体 | |
建造过程 | 材料运输 | 矿井偏远,不易于向矿井以及井下运输大型设备 | 人为选址,隧洞直径大,易于运输大型设备 |
建造难度 | 矿井状态各异,改造复杂,需要大量人工作业,缺乏经验 | 地下深层围岩稳定,硬岩掘进机作业,经验丰富 | |
地理因素 | 水源 | 一般不靠近水源 | 可以依托水源选址灵活 |
输电距离 | 大部分远离负荷中心/可再生能源电厂 | 可选择靠近负荷中心或新能源中心建造 | |
法律及社会因素 | 政策驱动 | 涉及安全生产,相关政策争取较难 | 无相关政策限制 |
示范工程 | 国外有零星几例工程设计规划 | 国外有研究和设计方案 | |
环保问题 | 矿区有水污染的风险 | 无环保生态影响 | |
法律问题 | 矿井产权和安全责任错综复杂,环环相扣,不利于再次利用;矿井责任复杂,即使是关停,封井,也不希望用作抽水蓄能,承担责任风险。 | 无法律限制 |
1 | BLAKERS A, STOCKS M, LU B, et al. Pathway to 100% renewable electricity[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1828-1833. |
2 | 肖立业, 潘教峰. 关于构建以光伏发电加物理储能为主的广域虚拟电厂的建议[J]. 中国科学院院刊, 37(4): 549-558. |
XIAO L Y, PAN J F. Proposal for establishing wide-area virtual power plant based on PV-dominated energy and physical energy storage system[J]. Bulletin of Chinese Academy of Sciences, 37(4): 549-558. | |
3 | The most economical storage technology for long discharge duration pumped hydro storage[EB/OL]. [2023-12-21]. https://www.ge.com/renewableenergy/hydro-power/hydro-pumped-storage. |
4 | Ready and waiting: Opportunities for energy storage[R]. Cornwall insight and DLA piper, 2023. |
5 | CHEN L Y. Method, device and system for storing data in cache in case of power failure: US8156376[P]. 2012-04-10. |
6 | TAM S W, BLOMQUIST C A, KARTSOUNES G T. Underground pumped hydro storage—An overview[J]. Energy Sources,1979, 4(4): 329-351. |
7 | Underground pumped hydro storage and compressed air energy storage: an analysis of regional markets and development potential[R]. United States: Harza Engineering Company, 1977. |
8 | ALLEN R D, DOHERTY T J, KANNBERG L D. Underground pumped hydroelectric storage[R]. United States: Battelle Memorial Institute, 1984. |
9 | BLOMQUIST C A, FRIGO A, DEGNAN J R. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 2. Two-stage regulated pump turbines for operating heads of 500 to 1000 m[R]. United States: Argonne National Laboratory, 1979 |
10 | FRIGO A A, BLOMQUIST C A, DEGNAN J R. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m[R]. United States: Argonne National Laboratory, 1979. |
11 | M·特金, 范莎莎. 加拿大首座具有地下下库的抽水蓄能电站[J]. 水利水电快报, 2012, 33(3): 4-7. |
12 | PEJOVIC S. White paper hydro energy storage[R]. Canada: Ryerson University, 2011. |
13 | KORITAROV V, PLOUSSARD Q, KWON J, et al. A review of technology innovations for pumped storage hydropower[R]. United States: Argonne National Laboratory, 2022 |
14 | CAPABILITIES C I W G. Innovative pumped storage hydropower configurations and uses[R]. United States: International Forum on Pumped Storage Hydropower (IFPSH), 2021. |
15 | 田中国则, 陈天心, 李仲杰. 日本关于地下抽水蓄能电站的研究[J]. 国际水力发电, 2004(1): 37-40. |
16 | WONG I H. An underground pumped storage scheme in the Bukit Timah Granite of Singapore[J]. Tunnelling and Underground Space Technology, 1996, 11(4): 485-489. |
17 | Б.Н.费利德曼, 夏云翔. 莫斯科地下抽水蓄能电站[J]. 水利水电快报, 2006, 27(14): 23-25. |
18 | 中国地质调查局. 中国水文地质图集(1979年版)数据产品[EB/OL]. [2023-12-21]. http://www.geoscience.cn/swdz/swdzt/index.htm. |
19 | 许雨喆. 基于废弃矿井的抽水蓄能电站设计[D]. 淮南: 安徽理工大学, 2019. |
XU Y Z. Design of pumped storage power station based on abandoned mines[D]. Huainan: Anhui University of Science & Technology, 2019. | |
20 | Gravity power[EB/OL]. [2023-12-19]. https://www.gravitypower.net/. |
21 | A new solution for large scale energy storage[EB/OL]. [2023-12-19]. https://gravity-storage.com/. |
22 | Cavern energy storage underground pumped storage hydroelectric technology[EB/OL]. [2023-12-19]. https://cavernenergy.com/technology/. |
23 | Quidnet energy geomechanical pumped storage[EB/OL]. [2023-12-19]. https://quidnetenergy.com/solution/#technologySection. |
24 | SLOCUM A H, FENNELL G E, DUNDAR G, et al. Ocean renewable energy storage (ORES) system: Analysis of an undersea energy storage concept[J]. Proceedings of the IEEE, 2013, 101(4): 906-924. |
25 | HAHN H, HAU D, DICK C, et al. Techno-economic assessment of a subsea energy storage technology for power balancing services[J]. Energy, 2017, 133: 121-127. |
26 | ERNST B, PUCHTA M, DICK C, et al. Storing energy at sea (StEnSea)[C]. 2ndInternational Conference on Large-Scale Grid Integration of Renewable Energy in India, 2019. |
27 | StEnSea—Offshore pumped hydroelectric storage[EB/OL]. [2023-12-19]. https://www.energie.fraunhofer.de/en/events-trade-fairs/allianz-energy-storage_2019/stensea-offshore-pumped-hydroelectric-storage-c1.html. |
28 | Ocean battery utility scale offshore energy storage[EB/OL]. [2023-12-19]. https://oceangrazer.com/. |
29 | 史成雷. 走进江门中微子实验站:在地下700米深处探索宇宙奥秘[EB/OL]. [2023-12-20]. https://www.southcn.com/node_0183de080d/17ad3172bb.shtml. |
30 | 杜江茜. 三个维度 读懂世界最深、最大地下实验室[EB/OL]. [2023-12-20]. https://www.sohu.com/a/742163470_121687414. |
31 | Pumped storage machines reversible pump turbines, ternary sets and motor generators[R]: Voith, 2020. |
32 | Pelton turbines[R]. Voith, 2021. |
33 | Tailor-made solutions for water applications pumps[R]. Voith, 2021. |
34 | HYDROWIRES INITIATIVE. Pumped storage hydropower valuation guidebook[R]. US: United States Department of Energy, 2021. |
35 | GENTNER C. Challenges in the design of pump turbines[R]: Andritz Hydro, 2012. |
36 | 浙江长龙山抽蓄电站6号机转子吊装完成[EB/OL]. [2022-02-09]. https://www.powerchina.cn/art/2022/2/9/art_7445_1314912.html. |
37 | 硬核!哈电集团又一科技成果达到国际领先水平[EB/OL]. [2023-12-21]. https://www.harbin-electric.com/news_view.asp?id=15839. |
38 | 国内首台!700米水头段抽水蓄能电站首台机组投入商业运行[EB/OL]. [2023-12-21]. https://dfem.dongfang.com/info/1240/1127.htm. |
39 | SALLABERGER M. Favourable winds for pumped storage[EB/OL]. [2023-12-21]. https://www.andritz.com/resource/blob/259428/dd569d8a058651434404b62a39c82ca4/favorable-wnd-pumped-storage-hn21-data.pdf. |
40 | 羊卓雍湖抽水蓄能电站[EB/OL]. http://xxfb.mwr.cn/slbk/zmslgc/zmslsnsdzzb/202004/t20200409_1462918.html. |
41 | 中国安能. 羊卓雍湖抽水蓄能电站[EB/OL]. [2023-12-19]. https://www.china-an.cn/index.php/hydropowerEngineering/12548.html. |
42 | XUE J G, HOU X L, ZHOU J L, et al. Obstacle identification for the development of pumped hydro storage using abandoned mines: A novel multi-stage analysis framework[J]. Journal of Energy Storage, 2022, 48: 104022. |
[1] | Genyuan TIAN. The application and development of cloud computing technology in the intelligent manufacturing of new energy vehicles [J]. Energy Storage Science and Technology, 2024, 13(5): 1748-1750. |
[2] | Zefei LUO, Yuanqing QIN. Research on the Innovation and optimization of smart manufacturing processes for new energy vehicle batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1751-1753. |
[3] | Yu WU, Limin LIU, Hua HUANG. On-line monitoring and in-situ analysis technology of new energy vehicle batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1335-1337. |
[4] | Ran SUN, Jianbo WANG, Yanzhao MA, Xiaoke ZHANG, Huaizhong HU. Adaptive control strategy for primary frequency regulation for new energy storage stations based on reinforcement learning [J]. Energy Storage Science and Technology, 2024, 13(3): 858-869. |
[5] | Xiaying XIAO, Chuanguang FAN, Feng GUO, Tianxin YANG, Dong WANG, Yunhui HUANG. Optimal allocation of energy storage power station based on improved multi-objective particle swarm optimization [J]. Energy Storage Science and Technology, 2024, 13(2): 503-514. |
[6] | Yuefeng LU, Zuogang GUO, Yu GU, Min XU, Tong LIU. Analysis of new energy storage policies and business models in China and abroad [J]. Energy Storage Science and Technology, 2023, 12(9): 3019-3032. |
[7] | Hongjian WANG, Yongchun LAI, Xianjin SU, Chunbao ZENG, Linyi XU. Solutions for new energy construction projects in extreme operating environments and liquid cooled energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2349-2354. |
[8] | Ming LI, Yunping ZHENG, Turhoun ARTHUR, fucairen Furi. Analysis and suggestions on new energy storage policy [J]. Energy Storage Science and Technology, 2023, 12(6): 2022-2031. |
[9] | Xiaoyu GUO, Hao YU, Xin ZHENG, Yujia LIU, Yuanjie ZUO, Miaomiao ZHANG. Optimal configuration of liquid flow battery energy storage in photovoltaic system [J]. Energy Storage Science and Technology, 2023, 12(4): 1158-1167. |
[10] | Jinsong LIU, Xiaogang ZHANG. Exploration and practice of talents training of undergraduate majors in new energy materials and devices under the background of “double carbon” [J]. Energy Storage Science and Technology, 2023, 12(3): 985-991. |
[11] | Peize YAN. Analysis of dynamic heat storage performance of automotive electric thermal phase change energy storage system based on new energy low-carbon background [J]. Energy Storage Science and Technology, 2023, 12(12): 3892-3894. |
[12] | Lei WANG, Xin WANG, Rongrong ZHANG, Zonghao LIU, Shenglong MU, Gang CHEN. Economic analysis of microgrid operation based on carbon neutrality [J]. Energy Storage Science and Technology, 2023, 12(1): 319-328. |
[13] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[14] | Wei LIU, Yanming WAN, Yalin XIONG, Jian LIU. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality" [J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. |
[15] | Zhiyong SHI, Caixia WANG, Jing HU. A price formation mechanism and cost diversion optimization method for designing an independently new energy-storing power station [J]. Energy Storage Science and Technology, 2022, 11(12): 4067-4076. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||