Energy Storage Science and Technology
Chuanxiang Yu(), Yingjian Zhang(), Aoran Pan, Haojie Guo, Wenpeng Mao
Received:
2024-01-02
Revised:
2024-01-29
Contact:
Chuanxiang Yu
E-mail:ychx002@163.com;273277154@qq.com
CLC Number:
Chuanxiang Yu, Yingjian Zhang, Aoran Pan, Haojie Guo, Wenpeng Mao. Research on state of charge estimation of power battery in wide temperature range[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0001.
1 | Wu, C.; Zhu, C.; Ge, Y.; Zhao, Y.A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries. Journal of Nanomaterials. 2015, 2015:1-9. |
2 | Hannana,M.A.; Lipu,M.S.H.; Hussain,A.A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renewable and Sustainable Energy Reviews.2017, 78: 834-854 |
3 | Jiao,Meng; Wang,Dongqing; Qiu,Jianlong.A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources. 2020, 459 |
4 | Shunli Wang, Paul Takyi-Aninakwa, Siyu Jin, Chunmei Yu, Carlos Fernandez, Daniel-Ioan Stroe.An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. Energy. 2022, 254(A). |
5 | Xiaoyu Li, Zhenpo Wang, Jinying Yan, Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression, Journal of Power Sources,2019, 421: 56-67 |
6 | Jiao,Meng; Wang,Dongqing; Qiu,Jianlong.A. GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources. 2020, 459 |
7 | 朱元富, 贺文武, 李建兴, 李有财, 李培强. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3):1163-1176. |
ZHU Yuanfu, HE Wenwu, LI Jianxing, LI Youcai, LI Peiqiang. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU. Energy Storage Science and Technology. 2021, 10(3): 1163-1176. | |
8 | Wu, Longxing.; Pang, Hui.; Jin, Jiamin.; Geng, Yuanfei.; Liu, Kai. A Review of SOC Estimation Methods for Lithium-Ion Batteries Based on Electrochemical Model. Transactions of China Electrotechnical Society. 2022, 37(7): 1703-1725. |
9 | Jokar A, Rajabloo B, Desilets M, et al. Review of simplified Pseudo-two-dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 44-55. |
10 | Jinpeng, Tian.; Rui, Xiong.; Weixiang, Shen.; Ju, Wang. A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries. Chinese Journal of Mechanical Engineering. 2020, 33, 98-112. |
11 | 李路路, 陶正顺, 潘庭龙, 杨玮林, 胡官洋. 锂电池分数阶建模及SoC估计策略研究[J]. 储能科学与技术, 2022. |
LI Lulu, TAO Zhengshun, PAN Tinglong,YANG Weilin,HU Guanyang. Research on fractional modeling and SoC estimation strategy of Lithium battery. Energy Storage Science and Technology, 2022. | |
12 | Yatsui MW, Bai H. Kalman filter based state-of-charge estimation for lithium-ion batteries in hybrid electric vehicles using pulse charging. Veh Power Propuls Conf (VPPC), 2011 IEEE 2011: 1-5 |
13 | 袁照凯, 范秋华, 王冬青, 孙天民. 基于 MIAEKF 的多温度下锂电池 SOC 估计[J]. 储能科学与技术. 2023. |
Yuan Zhaokai, Fan Qiuhua, Wang Dongqing,Sun Tianmin. State of Charge Estimation of Lithium Batteries under Multiple Temperatures based on the MIAEKF Algorithm. Energy Storage Science and Technology, 2023. | |
14 | 巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175. |
Wu Chunling,Hu Wenbo,Meng Jinhao,Liu Zhixuan,Cheng Yanqing. State of Charge Estimation of Lithium-Ion Batteries Based on Maximum Correlation-Entropy Criterion Extended Kalman Filtering Algorithm. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175. | |
15 | CHENG Z, LYU J, LIU Y, et al. Estimation of State of Charge for Lithium-Ion Battery Based on Finite Difference Extended Kalman Filter[J]. Journal of Applied Mathematics, 2014, 2014(S107): 1-10. |
16 | SUN D M, YU X L, Wang C M, et al. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator[J]. Energy, 2021, 214. |
17 | Adaikkappan M, Sathiyamoorthy N. A real time state of charge estimation using Harris Hawks optimization-based filtering approach for electric vehicle power batteries[J]. International Journal of Energy Research, 2022, 46(7):9 293-9309. |
18 | Maheshwari A, Nageswari S.Real-time state of charge estimation for electric vehicle power batteries using optimized filter[J]. Energy, 2022, 254(B). |
19 | N, Farshi, S, Daniel-Ioan.An Enhanced Equivalent Circuit Model With Real-Time Parameter Identification for Battery State-of-Charge Estimation. IEEE Transactions on Industrial Electronics,2022, 69(4): 3743-3751. |
20 | El Din, M., Hussein, A. A., Abdel-Hafez, M. F. Improved Battery SOC Estimation Accuracy Using a Modified UKF With an Adaptive Cell Model Under Real EV Operating Conditions. IEEE Transactions on Transportation Electrification, 2018, 4(2),: 408-417. |
21 | Liu Fang, Shao Chen, Su Weixing, et al. Research Papers Online joint estimator of key states for battery based on a new equivalent circuit model[J]. Journal of Energy Storage, 2022, 52. |
22 | Wang Kai, Feng Xiao, Pang Jinbo.State of Charge (SOC) Estimation of Lithium-ion Battery Based on Adaptive Square Root Unscented Kalman Filter. International Journal of Electrochemical Science, 2020, 15(9): 9499-9516. |
23 | PENG N, ZHANG S Z, GUO X, et al. Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter[J]. International Journal of Energy Research, 2021, 45(1): 975-990 |
24 | P Fornaro, P Puleston, P. Battaiotto, On-line parameter estimation of a Lithium-Ion battery/supercapacitor storage system using filtering sliding mode differentiators[J]. Journal of Energy Storage, 2020, 32. |
25 | Pillai, SU(Pillai, SU); Suel, T(Suel, T); Cha,SH(Cha, SH). The perron-frobenius theorem-Some of its applications.IEEE SIGNAL PROCESSING MAGAZINE, 2005, 22(2): 62-75. |
[1] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[2] | Honghui WANG, Yifan LIU, Deren CHU. Calendar aging of lithium titanate battery with different state of charge [J]. Energy Storage Science and Technology, 2023, 12(8): 2606-2614. |
[3] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[4] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[5] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[6] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[7] | Farong KOU, Xi LUO, Hao MEN, Yangjuan GUO, Tianxiang YANG. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine [J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. |
[8] | Xing WANG, Jun SUN, Ningfang CHEN, Li YAN. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy [J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. |
[9] | Zheng CHEN, Zhide WANG, Wenbiao MOU, Peiwang ZHU, Gang XIAO. State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm [J]. Energy Storage Science and Technology, 2023, 12(3): 941-950. |
[10] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[11] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[12] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[13] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[14] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[15] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||