Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3582-3592.doi: 10.19799/j.cnki.2095-4239.2024.0249
• Energy Storage System and Engineering • Previous Articles Next Articles
Di ZHU1(), Yangyang ZHAO1(), Dengxin AI2, Li ZHANG2, Yong ZHOU1
Received:
2024-03-22
Revised:
2024-04-28
Online:
2024-10-28
Published:
2024-10-30
Contact:
Yangyang ZHAO
E-mail:18896801003@163.com;zyy900318@126.com
CLC Number:
Di ZHU, Yangyang ZHAO, Dengxin AI, Li ZHANG, Yong ZHOU. Efficiency optimization of PMSM in flywheel energy storage under multiple working conditions based on genetic algorithm[J]. Energy Storage Science and Technology, 2024, 13(10): 3582-3592.
Table 6
Parameter sensitivity calculation results"
参数 | ρs(η1) | ρs(η2) | ρs(η3) | ρs(η4) | ρs(η5) | ρs(ηg ) |
---|---|---|---|---|---|---|
Dro | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.0245 |
Dso | 0.14 | 0.13 | 0.13 | 0.14 | 0.14 | 0.1383 |
Dsi | -0.09 | -0.07 | -0.06 | -0.06 | -0.06 | -0.0711 |
δair | 0.36 | 0.39 | 0.38 | 0.37 | 0.36 | 0.3653 |
hPM | 0.16 | 0.03 | -0.03 | -0.07 | -0.09 | 0.0134 |
Bs0 | -0.75 | -0.77 | -0.77 | -0.78 | -0.78 | -0.7679 |
Bs1 | -0.01 | 0.02 | -0.03 | 0.01 | 0.02 | 0.0039 |
Bs2 | 0 | 0.03 | 0.04 | 0.05 | 0.05 | 0.0303 |
hs | -0.19 | -0.18 | -0.18 | -0.17 | -0.17 | -0.1786 |
αp | 0.32 | 0.18 | 0.13 | 0.10 | 0.09 | 0.1812 |
L | 0.02 | 0.01 | 0.00 | 0.00 | -0.01 | 0.0039 |
1 | 孙健, 陶建龙, 胡芸蓉, 等. 基于热泵型储电技术国内外研究综述[J].储能科学与技术, 2024, 13(6): 1963-1976. |
SUN J, TAO J L, HU Y R, et al. Summary of research on power storage technology based on heat pump at home and abroad[J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976. | |
2 | 韩中合, 马立, 段宇轩, 等. 基于多元储能的分布式能源系统优化调度方法研究[J]. 动力工程学报, 2024, 44(2): 317-327. DOI: 10.19805/j.cnki.jcspe.2024.230002. |
HAN Z H, MA L, DUAN Y X, et al. Research on optimal scheduling method of distributed energy system based on multi-energy storage[J]. Journal of Chinese Society of Power Engineering, 2024, 44(2): 317-327. DOI: 10.19805/j.cnki.jcspe. 2024.230002. | |
3 | HEBNER R, BENO J, WALLS A. Flywheel batteries come around again[J]. IEEE Spectrum, 2002, 39(4): 46-51. DOI: 10.1109/6. 993788. |
4 | 陈家钰. 飞轮储能用高速永磁同步电机设计与分析[D]. 镇江: 江苏大学, 2021. DOI: 10.27170/d.cnki.gjsuu.2021.001460. |
CHEN J Y. Design and analysis of high-speed permanent magnet synchronous motor for flywheel energy storage[D]. Zhenjiang: Jiangsu University, 2021. DOI: 10.27170/d.cnki.gjsuu.2021.001460. | |
5 | NADEEM F, SUHAIL HUSSAIN S M, TIWARI P K, et al. Comparative review of energy storage systems, their roles, and impacts on future power systems[J]. IEEE Access, 2019, 7: 4555-4585. DOI: 10.1109/ACCESS.2018.2888497. |
6 | 张锡, 张铁柱, 孙宾宾, 等. 机电式飞轮车辆能量管理策略[J]. 科学技术与工程, 2021, 21(35): 15238-15246. DOI: 10.3969/j.issn.1671-1815.2021.35.047. |
ZHANG X, ZHANG T Z, SUN B B, et al. Energy management strategy of electromechanical flywheel vehicle[J]. Science Technology and Engineering, 2021, 21(35): 15238-15246. DOI: 10.3969/j.issn.1671-1815.2021.35.047. | |
7 | 魏乐, 李承霖, 房方, 等.小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗[J/OL].电网技术: 1-9. |
WEI L, LI C L, FANG F, et al. Optimization of convolutional neural network based on improved sparrow algorithm for flywheel energy storage system loss in small sample[J/OL]. Power System Technology: 1-9. | |
8 | 房方, 刘渝斌, 王冰玉, 等.基于NSGA-Ⅱ的飞轮-火电联合二次调频最优负荷分配策略[J].电力系统自动化, 2024, 48(12): 79-88. |
FANG F, LIU Y B, WANG B Y, et al. Optimal load allocation strategy of flywheel-thermal power coordinated secondary frequency regulation based on non-dominated sorting genetic algorithm-Ⅱ[J]. Automation of Electric Power Systems, 2024, 48(12): 79-88. | |
9 | 李忠瑞, 聂子玲, 艾胜, 等. 一种基于非线性扰动观测器的飞轮储能系统优化充电控制策略[J]. 电工技术学报, 2023, 38(6): 1506-1518. DOI: 10.19595/j.cnki.1000-6753.tces.221360. |
LI Z R, NIE Z L, AI S, et al. An optimized charging control strategy for flywheel energy storage system based on nonlinear disturbance observer[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1506-1518. DOI: 10.19595/j.cnki.1000-6753.tces.221360. | |
10 | 任京攀, 马宏伟, 姚明清. 基于粒子群算法的飞轮阵列协调控制策略[J]. 电工技术学报, 2021, 36(S1): 381-388. DOI: 10.19595/j.cnki.1000-6753.tces.l90148. |
REN J P, MA H W, YAO M Q. Coordinated control strategy of flywheel array based on particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 381-388. DOI: 10.19595/j.cnki.1000-6753.tces.l90148. | |
11 | 赵思锋, 唐英伟, 张建平, 等. GTR飞轮储能系统特性研究[J]. 电器与能效管理技术, 2019(1): 75-81. DOI: 10.16628/j.cnki.2095-8188.2019.01.013. |
ZHAO S F, TANG Y W, ZHANG J P, et al. Study of technical performance for GTR flywheel energy storage system[J]. Electrical & Energy Management Technology, 2019(1): 75-81. DOI: 10.16628/j.cnki.2095-8188.2019.01.013. | |
12 | 鲍海静, 梁培鑫, 柴凤. 飞轮储能用高速永磁同步电机技术综述[J]. 微电机, 2014, 47(2): 64-72. DOI: 10.15934/j.cnki.micromotors. 2014.02.016. |
BAO H J, LIANG P X, CHAI F. Key technology of high speed permanent magnet synchronous motors for FESS[J]. Micromotors, 2014, 47(2): 64-72. DOI: 10.15934/j.cnki.micromotors.2014.02.016. | |
13 | 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18. DOI: 10.19595/j.cnki.1000-6753.tces.2016.07.001. |
ZHANG F G, DU G H, WANG T Y, et al. Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18. DOI: 10.19595/j.cnki. 1000-6753.tces.2016.07.001. | |
14 | 董剑宁, 黄允凯, 金龙, 等. 高速永磁电机设计与分析技术综述[J]. 中国电机工程学报, 2014, 34(27): 4640-4653. DOI: 10.13334/j.0258-8013.pcsee.2014.27.011. |
DONG J N, HUANG Y K, JIN L, et al. Review on high speed permanent magnet machines including design and analysis technologies[J]. Proceedings of the CSEE, 2014, 34(27): 4640-4653. DOI: 10.13334/j.0258-8013.pcsee.2014.27.011. | |
15 | 陈前, 赵美玲, 廖继红, 等. 轻量化高效率永磁电机及其控制技术综述[J]. 电气工程学报, 2023, 18(4): 3-19. DOI: 10.11985/2023. 04.002. |
CHEN Q, ZHAO M L, LIAO J H, et al. Review on lightweight and high efficiency permanent magnet motor and its control techniques[J]. Journal of Electrical Engineering, 2023, 18(4): 3-19. DOI: 10.11985/2023.04.002. | |
16 | 孙玉坤, 陈家钰, 袁野. 飞轮储能用高速永磁同步电机损耗分析与优化[J]. 微电机, 2021, 54(8): 19-22, 79. DOI: 10.15934/j.cnki.micromotors.2021.08.004. |
SUN Y K, CHEN J Y, YUAN Y. Analysis and optimization of loss of high speed PMSM for flywheel energy storage[J]. Micromotors, 2021, 54(8): 19-22, 79. DOI: 10.15934/j.cnki.micromotors.2021.08.004. | |
17 | 焦渊远, 王艺斐, 戴兴建, 等. 飞轮储能系统电机转子散热研究进展[J]. 储能科学与技术, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki.2095-4239.2023.0261. |
JIAO Y Y, WANG Y F, DAI X J, et al. Overview of the motor-generator rotor cooling system in a flywheel energy storage system[J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki.2095-4239.2023.0261. | |
18 | 吴家彬. 飞轮储能用高速永磁同步电机设计与分析[D]. 沈阳: 沈阳工业大学, 2021. DOI: 10.27322/d.cnki.gsgyu.2021.000160. |
WU J B. Design and analysis of high-speed permanent magnet synchronous motor for flywheel energy storage[D]. Shenyang: Shenyang University of Technology, 2021. DOI: 10.27322/d.cnki.gsgyu.2021.000160. | |
19 | 张维煜, 李凯, 杨鑫. 基于参数优先级划分的飞轮电机多目标优化[J]. 西南交通大学学报, 2023, 58(4): 922-932. DOI: 10.3969/j.issn.0258-2724.20220845. |
ZHANG W Y, LI K, YANG X. Multi-objective optimization for flywheel motors based on parameter priority division[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 922-932. DOI: 10.3969/j.issn.0258-2724.20220845. | |
20 | 秦凯. 永磁同步电机能效最优控制策略研究[D]. 武汉: 武汉理工大学, 2018. |
QIN K. Research on optimal control strategy of energy efficiency of permanent magnet synchronous motor[D]. Wuhan: Wuhan University of Technology, 2018. | |
21 | 张新宾, 储江伟, 李洪亮, 等. 飞轮储能系统关键技术及其研究现状[J]. 储能科学与技术, 2015, 4(1): 55-60. DOI: 10.3969/j.issn.2095-4239.2015.01.005. |
ZHANG X B, CHU J W, LI H L, et al. Key technologies of flywheel energy storage systems and current development status[J]. Energy Storage Science and Technology, 2015, 4(1): 55-60. DOI: 10.3969/j.issn.2095-4239.2015.01.005. | |
22 | 刘国海, 王艳阳, 陈前. 非对称V型内置式永磁同步电机的多目标优化设计[J]. 电工技术学报, 2018, 33(S2): 385-393. DOI: 10.19595/j.cnki.1000-6753.tces.L80218. |
LIU G H, WANG Y Y, CHEN Q. Multi-objective optimization design of asymmetric V-type built-in permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 385-393. DOI: 10.19595/j.cnki.1000-6753.tces.L80218. | |
23 | 于群, 霍筱东, 何剑, 等. 基于斯皮尔曼相关系数和系统惯量的中国电网停电事故趋势预测[J]. 中国电机工程学报, 2023, 43(14): 5372-5381. DOI: 10.13334/j.0258-8013.pcsee.220035. |
YU Q, HUO X D, HE J, et al. Trend prediction of power blackout accidents in Chinese power grid based on Spearman's correlation coefficient and system inertia[J]. Proceedings of the CSEE, 2023, 43(14): 5372-5381. DOI: 10.13334/j.0258-8013.pcsee.220035. | |
24 | 谢冰川, 张岳, 徐振耀, 等. 基于代理模型的电机多学科优化关键技术综述[J]. 电工技术学报, 2022, 37(20): 5117-5143. DOI: 10.19595/j.cnki.1000-6753.tces.211394. |
XIE B C, ZHANG Y, XU Z Y, et al. Review on multidisciplinary optimization key technology of electrical machine based on surrogate models[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5117-5143. DOI: 10.19595/j.cnki.1000-6753.tces.211394. | |
25 | 卢忠昌, 刘芙蓉, 杨扬, 等. 基于FCM聚类与BO算法的PEMFC故障分类[J]. 电池, 2022, 52(6): 606-609. DOI:10.19535/j.1001-1579.2022.06.002. |
[1] | Xiaobing CHANG, Zongshang HOU, Lianqi LIU, Guang WANG, Jiale XIE. Joint estimation of the state of charge and temperature of lithium batteries based on the electric thermal coupling effect [J]. Energy Storage Science and Technology, 2024, 13(4): 1142-1153. |
[2] | Xing WANG, Jun SUN, Ningfang CHEN, Li YAN. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy [J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | Shuai HAN, Leping SUN, Jianbin LU, Xiaoxuan GUO. Multi-objective optimal dispatch strategy of gas-electric interconnected virtual power plant interval with electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1428-1436. |
[5] | Yong LUO, Zhenyu ZHOU, Futao SHEN, Huan HUANG, Xiaobin QIU, yongyong WENG. Electrothermal coupling modeling of battery pack considering time-varying parameters [J]. Energy Storage Science and Technology, 2022, 11(10): 3180-3190. |
[6] | Kuining LI, Jinghong WANG, Yi XIE, Bin LIU, Jiangyan LIU, Zhaoting LIU. Low-temperature compound-heating strategy and optimization of lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(10): 3191-3199. |
[7] | Delong ZHANG, Saif MUBAARAK, Siyu JIANG, Longze WANG, Jinxin LIU, Yongcong CHEN, Meicheng LI. Optimal allocation method of energy storage in PV station based on probabilistic power flow [J]. Energy Storage Science and Technology, 2021, 10(6): 2244-2251. |
[8] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[9] | Jinlong XU, Jiani SHEN, Qiankun WANG, Yijun HE, Zifeng MA, Wen TAN, Qingheng YANG. Analysis of electrothermal coupling abuse condition based on thermal runaway model of lithium-ion battery [J]. Energy Storage Science and Technology, 2021, 10(4): 1344-1352. |
[10] | Yinquan HU, Heping LIU. Optimization of efficient thermal management channel for battery pack based on genetic algorithm [J]. Energy Storage Science and Technology, 2021, 10(4): 1446-1453. |
[11] | Yanjuan LU, Youqin CHEN, Tinglong PAN. Community microgrid energy management considering electric vehicles and demand response [J]. Energy Storage Science and Technology, 2021, 10(2): 617-623. |
[12] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[13] | XIA Xinmao, GUAN Honghao, DING Pengfei, MENG Gaojun. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm [J]. Energy Storage Science and Technology, 2019, 8(3): 551-558. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||