Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3545-3555.doi: 10.19799/j.cnki.2095-4239.2024.0273
• Energy Storage System and Engineering • Previous Articles Next Articles
Binyang ZHANG1,2(), Xiaolong REN2(), Jiangming ZHAO1, Shunliang DING1
Received:
2024-03-28
Revised:
2024-04-29
Online:
2024-10-28
Published:
2024-10-30
Contact:
Xiaolong REN
E-mail:2431001665@qq.com;88974409@qq.com
CLC Number:
Binyang ZHANG, Xiaolong REN, Jiangming ZHAO, Shunliang DING. Numerical optimization of a liquid cooling plate with double helix flow channel for lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3545-3555.
Table 5
The schemes and results of the orthogonal test"
编号 | A/mm | V/(m/s) | T/mm | W/mm | Tmax/K | ΔT/K |
---|---|---|---|---|---|---|
1 | 23 | 0.08 | 0.5 | 3.5 | 309.70 | 5.22 |
2 | 23 | 0.12 | 1 | 4 | 305.87 | 3.73 |
3 | 23 | 0.16 | 1.5 | 4.5 | 303.91 | 2.92 |
4 | 23 | 0.2 | 2 | 5 | 302.87 | 2.52 |
5 | 24 | 0.08 | 1 | 4.5 | 306.86 | 4.15 |
6 | 24 | 0.12 | 0.5 | 5 | 306.55 | 4.31 |
7 | 24 | 0.16 | 2 | 3.5 | 304.16 | 3.13 |
8 | 24 | 0.2 | 1.5 | 4 | 303.68 | 2.68 |
9 | 25 | 0.08 | 1.5 | 5 | 305.58 | 3.83 |
10 | 25 | 0.12 | 2 | 4.5 | 304.16 | 3.21 |
11 | 25 | 0.16 | 0.5 | 4 | 306.43 | 4.21 |
12 | 25 | 0.2 | 1 | 3.5 | 304.69 | 3.09 |
13 | 26 | 0.08 | 2 | 4 | 305.97 | 4.23 |
14 | 26 | 0.12 | 1.5 | 3.5 | 305.34 | 3.58 |
15 | 26 | 0.16 | 1 | 5 | 304.28 | 3.21 |
16 | 26 | 0.2 | 0.5 | 4.5 | 305.42 | 3.89 |
Table 6
Polar analysis of maximum temperature and temperature difference"
评价指标 | 极差 | A | V | T | W |
---|---|---|---|---|---|
最高温度的极差分析/K | k1j | 305.59 | 307.03 | 307.03 | 305.97 |
k2j | 305.31 | 305.48 | 305.43 | 305.49 | |
k3j | 305.22 | 304.70 | 304.63 | 305.09 | |
k4j | 305.25 | 304.17 | 304.29 | 304.82 | |
Rj | 0.37 | 2.86 | 2.74 | 1.15 | |
温差的极差分析/K | k1j | 3.60 | 4.36 | 4.41 | 3.76 |
k2j | 3.57 | 3.71 | 3.55 | 3.71 | |
k3j | 3.59 | 3.37 | 3.25 | 3.54 | |
k4j | 3.73 | 3.05 | 3.27 | 3.47 | |
Rj | 0.16 | 1.31 | 1.16 | 0.29 |
1 | PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382. DOI: 10.1016/S0378-7753(02)00200-8. |
2 | JIAQIANG E, YUE M, CHEN J W, et al. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle[J]. Applied Thermal Engineering, 2018, 144: 231-241. DOI: 10.1016/j.applthermaleng.2018.08.064. |
3 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120307. DOI: 10.1016/j.ijheatmasstransfer.2020.120307. |
4 | LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118581. DOI: 10.1016/j.ijheatmasstransfer.2019.118581. |
5 | YATES M, AKRAMI M, JAVADI A A. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries[J]. Journal of Energy Storage, 2021, 33: 100913. DOI: 10.1016/j.est. 2019.100913. |
6 | XIE Y, LI H H, LI W, et al. Improving thermal performance of battery at high current rate by using embedded heat pipe system[J]. Journal of Energy Storage, 2022, 46: 103809. DOI: 10.1016/j.est.2021.103809. |
7 | WANG X M, XIE Y Q, DAY R, et al. Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack[J]. Energy, 2018, 156: 154-168. DOI: 10.1016/j.energy.2018.05.104. |
8 | CICCONI P, KUMAR P, VARSHNEY P. A support approach for the modular design of Li-ion batteries: A test case with PCM[J]. Journal of Energy Storage, 2020, 31: 101684. DOI: 10.1016/j.est.2020.101684. |
9 | NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143: 257-262. DOI: 10.1016/j.applthermaleng.2018.07.080. |
10 | LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[J]. Energy Conversion and Management, 2017, 150: 304-330. DOI: 10.1016/j.enconman.2017.08.016. |
11 | XIE Y Q, TANG J C, SHI S, et al. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials[J]. Energy Conversion and Management, 2017, 154: 562-575. DOI: 10.1016/j.enconman.2017.11.046. |
12 | 袁松, 汪怡平, 苏楚奇, 等. 基于相变和液冷耦合的锂电池散热特性研究[J]. 电源技术, 2022, 46(10): 1127-1131. DOI: 10.3969/j.issn.1002-087X.2022.10.012. |
YUAN S, WANG Y P, SU C Q, et al. Study on heat dissipation characteristics of Li-ion battery based on coupling of phase change materials and liquid cooling[J]. Chinese Journal of Power Sources, 2022, 46(10): 1127-1131. DOI: 10.3969/j.issn.1002-087X.2022.10.012. | |
13 | LI P S, ZENG Q, MA M, et al. Numerical study of the performance of heat pipe-based thermal management system for power lithium battery[J]. Heat Transfer Research, 2023, 54(14): 63-77. DOI: 10.1615/heattransres.2023047361. |
14 | DENG Y W, FENG C L, E J Q, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review[J]. Applied Thermal Engineering, 2018, 142: 10-29. DOI: 10.1016/j.applthermaleng.2018.06.043. |
15 | FAN X, MENG C, YANG Y W, et al. Numerical optimization of the cooling effect of a bionic fishbone channel liquid cooling plate for a large prismatic lithium-ion battery pack with high discharge rate[J]. Journal of Energy Storage, 2023, 72: 108239. DOI: 10.1016/j.est.2023.108239. |
16 | SHENG L, SU L, ZHANG H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 141: 658-668. DOI: 10.1016/j.ijheatmasstransfer.2019.07.033. |
17 | ZHAO D, LEI Z G, AN C. Research on battery thermal management system based on liquid cooling plate with honeycomb-like flow channel[J]. Applied Thermal Engineering, 2023, 218: 119324. DOI: 10.1016/j.applthermaleng.2022.119324. |
18 | SHANG Z Z, QI H Z, LIU X T, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer, 2019, 130: 33-41. DOI: 10.1016/j.ijheatmasstransfer.2018.10.074. |
19 | 唐程波, 锁要红, 何昭坤. 基于正弦函数的液冷板上流体流向对锂离子电池散热性能的影响[J]. 储能科学与技术, 2023, 12(8): 2547-2555. DOI: 10.19799/j.cnki.2095-4239.2023.0141. |
TANG C B, SUO Y H, HE Z K. Effect of fluid-flow direction on heat dissipation from lithium-ion batteries based on sine-function cooling plate[J]. Energy Storage Science and Technology, 2023, 12(8): 2547-2555. DOI: 10.19799/j.cnki.2095-4239.2023.0141. | |
20 | RAO Z H, WANG Q C, HUANG C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669. DOI: 10.1016/j.apenergy.2015.12.021. |
21 | YUN S, KWON J, CHO W, et al. Performance improvement of hot stamping die for patchwork blank using mixed cooling channel designs with straight and conformal channels[J]. Applied Thermal Engineering, 2020, 165: 114562. DOI: 10.1016/j.applthermaleng.2019.114562. |
22 | WANG J G, LU S, WANG Y Z, et al. Novel investigation strategy for mini-channel liquid-cooled battery thermal management system[J]. International Journal of Energy Research, 2020, 44(3): 1971-1985. DOI: 10.1002/er.5049. |
[1] | Yuelin CHEN, Hongzhong MA, Muyu ZHU, Wenjing XUAN, Sihan WANG. Research on the liquid cooling technology of a lithium iron phosphate battery pack under a peak load regulation in a power grid [J]. Energy Storage Science and Technology, 2024, 13(8): 2704-2712. |
[2] | Zheng LI, Zhenzhong YANG, Qiong WANG, Renzong HU. Patent intelligence analysis of the research progress in low-temperature electrolytes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2317-2326. |
[3] | Zhaocai LYU, Yuxi WANG, Zhitao WANG, Xiaohui SUN, Jingkang LI. Influence of heated calendering process on cathode film performance of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1443-1450. |
[4] | Yibiao GUAN, Jinran SHEN, Jialiang LIU, Zhanzhan QU, Fei GAO, Shiyang LIU, Cuijing GUO, Shuqin ZHOU, Shanshan FU. Comprehensive performance evaluation standards for energy storage lithium-ion batteries guided by safe and high-quality applications [J]. Energy Storage Science and Technology, 2023, 12(9): 2946-2953. |
[5] | Chengbo TANG, Yaohong SUO, Zhaokun HE. Effect of fluid-flow direction on heat dissipation from lithium-ion batteries based on sine-function cooling plate [J]. Energy Storage Science and Technology, 2023, 12(8): 2547-2555. |
[6] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[7] | Lianbing LI, Le ZHU, Ruixiong JING, Lanchao WANG, Qiqi HAN. Remaining useful life prediction of lithium-ion batteries based on the DESSA-DESN model and the NCA algorithm [J]. Energy Storage Science and Technology, 2023, 12(10): 3191-3202. |
[8] | Yawen ZHAO, Yu HUANG, Yanru ZHANG. Analysis of safety test standard of rail transit power lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2505-2518. |
[9] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[10] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[11] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[12] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[13] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[14] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[15] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||