Energy Storage Science and Technology
Jie Chen, Hongkun Ma, Yulong Ding
Received:
2024-09-18
Revised:
2024-09-30
CLC Number:
Jie Chen, Hongkun Ma, Yulong Ding. MgSO4·7H2O for thermochemical energy storage: dehydration and hydration kinetics and cyclability[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0875.
Table 2
Dehydration steps of MgSO4 ∙7H2O by STA and DSC"
Tonset (˚C) | Enthalpy (J/g) | Enthalpy (%) | ΔTG (%) | Dehydration steps | |
---|---|---|---|---|---|
47.7 | 168 | 12 | 5.10 | MgSO4∙7H2O(s) → MgSO4·6 H2O(s) + H2O(g) | |
67.7 | 378 | 27 | 15.04 | MgSO4·6 H2O(s) → MgSO4·4 H2O(s) + 2 H2O(g) | |
110.6 | 519 | 38 | 14.06 | MgSO4·4 H2O(s) → MgSO4·2 H2O(s) + 2 H2O(g) | |
140.8 | 166 | 12 | 3.17 | MgSO4·2 H2O(s) → MgSO4·1.5H2O(s) + 0.5 H2O(g) | |
149.7 | 145 | 11 | 3.48 | MgSO4· 1.5H2O(s) → MgSO4· H2O(s) + 0.5 H2O(g) | |
< 270 | - | - | 6.10 | MgSO4·H2O(s) → MgSO4· 0.2H2O (s) + 0.8 H2O(g) | |
275 | - | - | 1.50 | MgSO4·0.2 H2O(s) → MgSO4 (s) + 0.2 H2O(g) | |
Total | 1376 2.3 GJ/m3 | 100% | 40.87% (T ≤ 150˚C) 50.5% (T ≤ 300˚C) | MgSO4·7H2O(s) → MgSO4 (s) + 7H2O(g) |
1 | D. Aydin, S.P. Casey, S. Riffat, The latest advancements on thermochemical heat storage systems, Renew. Sustain. Energy Rev. 41 (2015) 356–367. https://doi.org/10.1016/j.rser.2014.08.054. |
2 | A.H. Abedin, A Critical Review of Thermochemical Energy Storage Systems, Open Renew. Energy J. 4 (2011) 42–46. https://doi.org/10.2174/1876387101004010042. |
3 | P. Gabrielli, A. Acquilino, S. Siri, S. Bracco, G. Sansavini, M. Mazzotti, Optimization of low-carbon multi-energy systems with seasonal geothermal energy storage: The Anergy Grid of ETH Zurich, Energy Convers. Manag. X. 8 (2020) 100052. https://doi.org/10.1016/j.ecmx.2020.100052. |
4 | U. Tesio, E. Guelpa, C. Ortiz, R. Chacartegui, V. Verda, Optimized synthesis/design of the carbonator side for direct integration of thermochemical energy storage in small size Concentrated Solar Power, Energy Convers. Manag. X. 4 (2019) 100025. https://doi.org/10.1016/j.ecmx.2019.100025. |
5 | Y. Ding, S.B. Riffat, Thermochemical energy storage technologies for building applications: a state-of-the-art review, Int. J. Low-Carbon Technol. 8 (2013) 106–116. https://doi.org/10.1093/ijlct/cts004. |
6 | A.H. Abedin, M.A. Rosen, Closed and open thermochemical energy storage: Energy- and exergy-based comparisons, Energy. 41 (2012) 83–92. https://doi.org/10.1016/j.energy.2011.06.034. |
7 | Pintaldi S. Medium Temperature Thermal Energy Storage for High Efficiency Solar Cooling Applications. PhD thesis 2017. |
8 | R. Cuypers, N. Maraz, J. Eversdijk, C. Finck, E. Henquet, H. Oversloot, H. Van't Spijker, A. De Geus, Development of a seasonal thermochemical storage system, Energy Procedia. 30 (2012) 207–214. https://doi.org/10.1016/j.egypro.2012.11.025. |
9 | U. Tesio, E. Guelpa, V. Verda, Integration of thermochemical energy storage in concentrated solar power. Part 2: Comprehensive optimization of supercritical CO2 power block, Energy Convers. Manag. X. 6 (2020) 100038. https://doi.org/10.1016/j.ecmx.2020.100038. |
10 | U. Tesio, E. Guelpa, V. Verda, Integration of thermochemical energy storage in concentrated solar power. Part 2: Comprehensive optimization of supercritical CO2 power block, Energy Convers. Manag. X. 6 (2020) 100038. https://doi.org/10.1016/j.ecmx.2020.100038. |
11 | R. Parameshwaran, S. Kalaiselvam, S. Harikrishnan, A. Elayaperumal, Sustainable thermal energy storage technologies for buildings: A review, Renew. Sustain. Energy Rev. 16 (2012) 2394–2433. https://doi.org/10.1016/j.rser.2012.01.058. |
12 | L. Scapino, H.A. Zondag, J. Van Bael, J. Diriken, C.C.M. Rindt, Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale, Appl. Energy. 190 (2017) 920–948. https://doi.org/10.1016/j.apenergy.2016.12.148. |
13 | P. Pinel, C.A. Cruickshank, I. Beausoleil-Morrison, A. Wills, A review of available methods for seasonal storage of solar thermal energy in residential applications, Renew. Sustain. Energy Rev. 15 (2011) 3341–3359. https://doi.org/10.1016/j.rser.2011.04.013. |
14 | J. Xu, R.Z. Wang, Y. Li, A review of available technologies for seasonal thermal energy storage, Sol. Energy. 103 (2014) 610–638. https://doi.org/10.1016/j.solener.2013.06.006. |
15 | K. Posern, C. Kaps, Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates, J. Therm. Anal. Calorim. 92 (2008) 905–909. https://doi.org/10.1007/s10973-007-8640-4. |
16 | I.M. van de Voort IM. Characterization of a thermochemical storage material. Tue Master Thesis 2007:58 |
17 | H. Zondag, M. van Essen, Z. He, R. Schuitema, W. van Helden, Characterisation of MgSO4 for Thermochemical Storage, Second Int. Renew. Energy Storage Conf. (IRES II). (2007). |
18 | C.J. Ferchaud, H.A. Zondag, J.B.J. Veldhuis, R. De Boer, Study of the reversible water vapour sorption process of MgSO 4.7H2O and MgCl2.6H2O under the conditions of seasonal solar heat storage, J. Phys. Conf. Ser. 395 (2012). https://doi.org/10.1088/1742-6596/395/1/012069. |
19 | H. Stach, J. Mugele, J. Jänchen, E. Weiler, Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents, Adsorption. 11 (2005) 393–404. https://doi.org/10.1007/s10450-005-5405-x. |
20 | G. Balasubramanian, M. Ghommem, M.R. Hajj, W.P. Wong, J.A. Tomlin, I.K. Puri, Modeling of thermochemical energy storage by salt hydrates, Int. J. Heat Mass Transf. 53 (2010) 5700–5706. https://doi.org/10.1016/j.ijheatmasstransfer.2010.08.012. |
21 | S. Hongois, F. Kuznik, P. Stevens, J.-J. Roux, M. Radulescu, E. Beaurepair, Thermochemical Storage Using Composite Materials: From the Material To the System, (2016) 1–8. https://doi.org/10.18086/eurosun.2010.16.10. |
22 | Donkers PAJ, Pel L, Adan OCG. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage. J Energy Storage 2016;5:25–32. https://doi.org/10.1016/j.est.2015.11.005. |
23 | C.J. Ferchaud, R.A.A. Scherpenborg, H.A. Zondag, R. De Boer, Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4·7H2O, Energy Procedia. 57 (2014) 2436–2440. https://doi.org/10.1016/j.egypro.2014.10.252. |
24 | J.D. Martı, C. Rodriguez-navarro, Mechanism and Kinetics of Dehydration of Epsomite Crystals Formed in the Presence of Organic Additives, (2007) 41–52. |
25 | V.M. Gurevich, O.L. Kuskov, K.S. Gavrichev, A. V. Tyurin, Heat capacity and thermodynamic functions of epsomite MgSO4 · 7 H2O at 0-303 K, Geochemistry Int. 45 (2007) 206–209. https://doi.org/10.1134/S0016702907020103. |
26 | L. Okhrimenko, L. Favergeon, K. Johannes, F. Kuznik, M. Pijolat, Thermodynamic study of MgSO4 – H2O system dehydration at low pressure in view of heat storage, Thermochim. Acta. 656 (2017) 135–143. https://doi.org/10.1016/j.tca.2017.08.015. |
27 | K. Linnow, M. Niermann, D. Bonatz, K. Posern, M. Steiger, Experimental studies of the mechanism and kinetics of hydration reactions, Energy Procedia. 48 (2014) 394–404. https://doi.org/10.1016/j.egypro.2014.02.046. |
28 | P.A.J. Donkers, L. Pel, O.C.G. Adan, Experimental studies for the cyclability of salt hydrates for thermochemical heat storage, J. Energy Storage. 5 (2016) 25–32. https://doi.org/10.1016/j.est.2015.11.005. |
29 | Mechanism and Kinetics of Dehydration of Epsomite Crystals.pdf, (n.d.). |
30 | K. Posern, K. Linnow, M. Niermann, C. Kaps, M. Steiger, Thermochemical investigation of the water uptake behavior of MgSO4 hydrates in host materials with different pore size, Thermochim. Acta. 611 (2015) 1–9. https://doi.org/10.1016/j.tca.2015.04.031. |
31 | K. Posern, C. Kaps, Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2, Thermochim. Acta. 502 (2010) 73–76. https://doi.org/10.1016/j.tca.2010.02.009. |
32 | S. Gschwander, T. Haussmann, G. Hagelstein, A. Sole, L.F. Cabeza, G. Diarce, W. Hohenauer, D. Lager, A. Ristic, C. Rathgeber, P. Hennemann, H. Mehling, C. Peñalosa, A. Lazaro, F. Ise, Standardization of PCM Characterization via DSC, (n.d.) 2–9. |
33 | F. Aguilar, J. Worlitschek, Consistent DSC and TGA Methodology as Basis for the Measurement and Comparison of Thermo-Physical Properties of Phase Change Materials, (2020). |
34 | Steiger M, Linnow K. Hydration of MgSO4-H2O and Generation of Stress in Porous Materials. Crystal growth & design 2008; 8:336-343 |
[1] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[2] | Yang YANG, Yaxuan XIONG, Jing REN, Yanqi ZHAO, Shuo LI, Xi TIAN, Yulong DING. Effects of CO2 capture on carbide-steel slag shape-stable phase-change composites [J]. Energy Storage Science and Technology, 2023, 12(12): 3690-3698. |
[3] | Yunhan LIU, Liang WANG, Shuang ZHANG, Xipeng LIN, Zhiwei GE, Yakai BAI, Lin LIN, Haisheng CHEN. Thermal properties and thermal cycling stability of hydrated salt/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3627-3634. |
[4] | Zhihao ZHANG, Xiaogang JIN, Hengxing BAO, Xiang LING. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor [J]. Energy Storage Science and Technology, 2023, 12(1): 227-235. |
[5] | Zifeng HU, Yaozu XU, Zhenyun DUAN, Xiangdong SHANG, Jingjiu XU. Analysis of the heat storage process of a new heat storage body structure [J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. |
[6] | Huixiang WANG, Yaxuan XIONG, Jing REN, Chenhua YAO, Chaoyu SONG, Yuting WU, Yulong DING. Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites [J]. Energy Storage Science and Technology, 2022, 11(12): 3819-3827. |
[7] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[8] | Xiangyu HAN, Liang WANG, Zhiwei GE, Haoshu LING, Xipeng LIN, Haisheng CHEN, Long PENG. The thermal storage and release kinetics of Co3O4/CoO redox reaction [J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. |
[9] | Bowen YANG, Jun YAN, Changying ZHAO. Investigating the performance of a fluidized bed reactor for a magnesium hydroxide thermochemical energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1735-1744. |
[10] | Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor [J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. |
[11] | Changming DING, Hua WEN. Multi-objective thermal optimization of ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2020, 9(6): 1961-1968. |
[12] | ZHU Yeqing. The system level heat dissipation analysis about energy storage [J]. Energy Storage Science and Technology, 2018, 7(S1): 92-94. |
[13] | LI Yu, DU Jianhua, HUANGFU Chenxin, TU Ran, ZHANG Rencheng. The temperature field and safety properties of supercapacitor’s during large current charging and discharging [J]. Energy Storage Science and Technology, 2018, 7(1): 108-. |
[14] | LI Yuefeng, ZHANG Dong. Thermal stability of Li2CO3-Na2CO3 based high-temperature phase change materials [J]. Energy Storage Science and Technology, 2013, 2(4): 369-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||